Network virtualization is known as a promising technology to tackle the ossification of current Internet and will play an important role in the future network area. Virtual network embedding(VNE) is a key issue in net...Network virtualization is known as a promising technology to tackle the ossification of current Internet and will play an important role in the future network area. Virtual network embedding(VNE) is a key issue in network virtualization. VNE is NP-hard and former VNE algorithms are mostly heuristic in the literature.VNE exact algorithms have been developed in recent years. However, the constraints of exact VNE are only node capacity and link bandwidth.Based on these, this paper presents an exact VNE algorithm, ILP-LC, which is based on Integer Linear Programming(ILP), for embedding virtual network request with location constraints. This novel algorithm is aiming at mapping virtual network request(VNR) successfully as many as possible and consuming less substrate resources.The topology of each VNR is randomly generated by Waxman model. Simulation results show that the proposed ILP-LC algorithm outperforms the typical heuristic algorithms in terms of the VNR acceptance ratio, at least 15%.展开更多
This paper presents an algorithm for computing a linear recurrence system R(n, m) of order m for n equations on MIMD parallel system. This algorithm is not only easy to be programmed on a parallel computer system, but...This paper presents an algorithm for computing a linear recurrence system R(n, m) of order m for n equations on MIMD parallel system. This algorithm is not only easy to be programmed on a parallel computer system, but also reduces the data-waiting time due to compute-ahead strategy. The paper analyses how to achieve maximal load balancing when the algorithm is implemented on MIMD parallel system. By the end of the paper, an analysis on the speedup and parallel efficiency are given. The results indicate that the new parallel elimination algorithm has great improvement compared with the old ones.展开更多
To improve the identification capability of AP algorithm in time-varying sparse system, we propose a block parallel l_0-SWL-DCD-AP algorithm in this paper. In the proposed algorithm, we first introduce the l_0-norm co...To improve the identification capability of AP algorithm in time-varying sparse system, we propose a block parallel l_0-SWL-DCD-AP algorithm in this paper. In the proposed algorithm, we first introduce the l_0-norm constraint to promote its application for sparse system. Second, we use the shrinkage denoising method to improve its track ability. Third, we adopt the widely linear processing to take advantage of the non-circular properties of communication signals. Last, to reduce the high computational complexity and make it easy to implemented, we utilize the dichotomous coordinate descent(DCD) iterations and the parallel processing to deal with the tapweight update in the proposed algorithm. To verify the convergence condition of the proposed algorithm, we also analyze its steadystate behavior. Several simulation are done and results show that the proposed algorithm can achieve a faster convergence speed and a lower steady-state misalignment than similar APA-type algorithm. When apply the proposed algorithm in the decision feedback equalizer(DFE), the bite error rate(BER) decreases obviously.展开更多
We establish polynomial complexity corrector algorithms for linear programming over bounds of the Mehrotra-type predictor- symmetric cones. We first slightly modify the maximum step size in the predictor step of the s...We establish polynomial complexity corrector algorithms for linear programming over bounds of the Mehrotra-type predictor- symmetric cones. We first slightly modify the maximum step size in the predictor step of the safeguard based Mehrotra-type algorithm for linear programming, that was proposed by Salahi et al. Then, using the machinery of Euclidean Jordan algebras, we extend the modified algorithm to symmetric cones. Based on the Nesterov-Todd direction, we obtain O(r log ε1) iteration complexity bound of this algorithm, where r is the rank of the Jordan algebras and ε is the required precision. We also present a new variant of Mehrotra-type algorithm using a new adaptive updating scheme of centering parameter and show that this algorithm enjoys the same order of complexity bound as the safeguard algorithm. We illustrate the numerical behaviour of the methods on some small examples.展开更多
随着先进工艺和技术的不断进步,要想保证数据在高速传输中的正确性,均衡器需要有更高的补偿和更低的功耗,才能实现高效通信。基于12 nm互补金属氧化物半导体工艺,设计了一种高增益、低功耗的自适应连续时间线性均衡器(continuous time l...随着先进工艺和技术的不断进步,要想保证数据在高速传输中的正确性,均衡器需要有更高的补偿和更低的功耗,才能实现高效通信。基于12 nm互补金属氧化物半导体工艺,设计了一种高增益、低功耗的自适应连续时间线性均衡器(continuous time linear equalizer,CTLE),该均衡器采用2级级联结构来补偿信道衰减,并提高接收信号的质量。此外,自适应模块通过采用符号-符号最小均方误差(sign-sign least mean square,SS-LMS)算法,使抽头系数加快了收敛速度。仿真结果表明,当传输速率为16 Gbit/s时,均衡器可以补偿-15.53 dB的半波特率通道衰减,均衡器系数在16×10^(4)个单元间隔数据内收敛,并且收敛之后接收误码率低于10^(-12)。展开更多
Nested linear array enables to enhance localization resolution and achieve under-determined direction of arrival(DOA)estimation.In this paper,the traditional two-level nested linear array is improved to achieve more d...Nested linear array enables to enhance localization resolution and achieve under-determined direction of arrival(DOA)estimation.In this paper,the traditional two-level nested linear array is improved to achieve more degrees of freedom(DOFs)and better angle estimation performance.Furthermore,a computationally efficient DOA estimation algorithm is proposed.The discrete Fourier transform(DFT)method is utilized to obtain coarse DOA estimates,and subsequently,fine DOA estimates are achieved by spatial smoothing multiple signals classification(SS-MUSIC)algorithm.Compared to SS-MUSIC algorithm,the proposed algorithm has the same estimation accuracy with lower computational complexity because the coarse DOA estimates enable to shrink the range of angle spectral search.In addition,the estimation of the number of signals is not required in advance by DFT method.Extensive simulation results testify the effectiveness of the proposed algorithm.展开更多
It is difficult to develop image reconstruction algorithms for tomographic gamma scanning based on drummed radioactive residues or wastes.In this paper,a novel reconstruction algorithm of transmission image for tomogr...It is difficult to develop image reconstruction algorithms for tomographic gamma scanning based on drummed radioactive residues or wastes.In this paper,a novel reconstruction algorithm of transmission image for tomographic gamma scanning is proposed.It is based on the conventional transmission equation and equivalent gamma-ray track length modified by a Monte Carlo method.The algorithm is implemented by simulating the samples on the established platform.For the verification experiments of the algorithm,several cubic voxel samples were designed and manufactured.Experimental tests were conducted.The tomographic gamma scanning of transmission images is compared with the linear attenuation coefficients by the simulated values and experimental data with the algorithm and the reference values.The results show that the absolute relative errors of the reconstructed images are less than 5%.展开更多
The problem of potential field inversion can be become that of solving system of linear equations by using of linear processing. There are a lot of algorithms for solving any system of linear equations, and the regula...The problem of potential field inversion can be become that of solving system of linear equations by using of linear processing. There are a lot of algorithms for solving any system of linear equations, and the regularized method is one of the best algorithms. But there is a shortcoming in application with the regularized method, viz. the optimum regularized parameter must be determined by experience, so it is difficulty to obtain an optimum solution. In this paper, an iterative algorithm for solving any system of linear equations is discussed, and a sufficient and necessary condition of the algorithm convergence is presented and proved. The algorithm is convergent for any starting point, and the optimum solution can be obtained, in particular, there is no need to calculate the inverse matrix in the algorithm. The typical practical example shows the iterative algorithm is simple and practicable, and the inversion effect is better than that of regularized method.展开更多
基金supported by the National Basic Research Program of China(973 Program)under Grant 2013CB329005
文摘Network virtualization is known as a promising technology to tackle the ossification of current Internet and will play an important role in the future network area. Virtual network embedding(VNE) is a key issue in network virtualization. VNE is NP-hard and former VNE algorithms are mostly heuristic in the literature.VNE exact algorithms have been developed in recent years. However, the constraints of exact VNE are only node capacity and link bandwidth.Based on these, this paper presents an exact VNE algorithm, ILP-LC, which is based on Integer Linear Programming(ILP), for embedding virtual network request with location constraints. This novel algorithm is aiming at mapping virtual network request(VNR) successfully as many as possible and consuming less substrate resources.The topology of each VNR is randomly generated by Waxman model. Simulation results show that the proposed ILP-LC algorithm outperforms the typical heuristic algorithms in terms of the VNR acceptance ratio, at least 15%.
文摘This paper presents an algorithm for computing a linear recurrence system R(n, m) of order m for n equations on MIMD parallel system. This algorithm is not only easy to be programmed on a parallel computer system, but also reduces the data-waiting time due to compute-ahead strategy. The paper analyses how to achieve maximal load balancing when the algorithm is implemented on MIMD parallel system. By the end of the paper, an analysis on the speedup and parallel efficiency are given. The results indicate that the new parallel elimination algorithm has great improvement compared with the old ones.
基金supported by the National Natural Science Foundation of China (Grant No. 61471138, 50909029 and 61531012)Program of International S\&T Cooperation (Grant No. 2013DFR20050)+1 种基金the Defense Industrial Technology Development Program (Grant No. B2420132004)the Acoustic Science and Technology Laboratory (2014)
文摘To improve the identification capability of AP algorithm in time-varying sparse system, we propose a block parallel l_0-SWL-DCD-AP algorithm in this paper. In the proposed algorithm, we first introduce the l_0-norm constraint to promote its application for sparse system. Second, we use the shrinkage denoising method to improve its track ability. Third, we adopt the widely linear processing to take advantage of the non-circular properties of communication signals. Last, to reduce the high computational complexity and make it easy to implemented, we utilize the dichotomous coordinate descent(DCD) iterations and the parallel processing to deal with the tapweight update in the proposed algorithm. To verify the convergence condition of the proposed algorithm, we also analyze its steadystate behavior. Several simulation are done and results show that the proposed algorithm can achieve a faster convergence speed and a lower steady-state misalignment than similar APA-type algorithm. When apply the proposed algorithm in the decision feedback equalizer(DFE), the bite error rate(BER) decreases obviously.
基金Supported by the National Natural Science Foundation of China(11471102,61301229)Supported by the Natural Science Foundation of Henan University of Science and Technology(2014QN039)
文摘We establish polynomial complexity corrector algorithms for linear programming over bounds of the Mehrotra-type predictor- symmetric cones. We first slightly modify the maximum step size in the predictor step of the safeguard based Mehrotra-type algorithm for linear programming, that was proposed by Salahi et al. Then, using the machinery of Euclidean Jordan algebras, we extend the modified algorithm to symmetric cones. Based on the Nesterov-Todd direction, we obtain O(r log ε1) iteration complexity bound of this algorithm, where r is the rank of the Jordan algebras and ε is the required precision. We also present a new variant of Mehrotra-type algorithm using a new adaptive updating scheme of centering parameter and show that this algorithm enjoys the same order of complexity bound as the safeguard algorithm. We illustrate the numerical behaviour of the methods on some small examples.
文摘随着先进工艺和技术的不断进步,要想保证数据在高速传输中的正确性,均衡器需要有更高的补偿和更低的功耗,才能实现高效通信。基于12 nm互补金属氧化物半导体工艺,设计了一种高增益、低功耗的自适应连续时间线性均衡器(continuous time linear equalizer,CTLE),该均衡器采用2级级联结构来补偿信道衰减,并提高接收信号的质量。此外,自适应模块通过采用符号-符号最小均方误差(sign-sign least mean square,SS-LMS)算法,使抽头系数加快了收敛速度。仿真结果表明,当传输速率为16 Gbit/s时,均衡器可以补偿-15.53 dB的半波特率通道衰减,均衡器系数在16×10^(4)个单元间隔数据内收敛,并且收敛之后接收误码率低于10^(-12)。
基金supported by the Postgraduate Research & Practice Innovation Program of Jiangsu Province (No.SJCX18_0103)Key Laboratory of Dynamic Cognitive System of Electromagnetic Spectrum Space (Nanjing University of Aeronautics and Astronautics), Ministry of Industry and Information Technology (No.KF20181915)
文摘Nested linear array enables to enhance localization resolution and achieve under-determined direction of arrival(DOA)estimation.In this paper,the traditional two-level nested linear array is improved to achieve more degrees of freedom(DOFs)and better angle estimation performance.Furthermore,a computationally efficient DOA estimation algorithm is proposed.The discrete Fourier transform(DFT)method is utilized to obtain coarse DOA estimates,and subsequently,fine DOA estimates are achieved by spatial smoothing multiple signals classification(SS-MUSIC)algorithm.Compared to SS-MUSIC algorithm,the proposed algorithm has the same estimation accuracy with lower computational complexity because the coarse DOA estimates enable to shrink the range of angle spectral search.In addition,the estimation of the number of signals is not required in advance by DFT method.Extensive simulation results testify the effectiveness of the proposed algorithm.
基金Supported by the Foundation for Returned Oversea Chinese Scholars(No.33)
文摘It is difficult to develop image reconstruction algorithms for tomographic gamma scanning based on drummed radioactive residues or wastes.In this paper,a novel reconstruction algorithm of transmission image for tomographic gamma scanning is proposed.It is based on the conventional transmission equation and equivalent gamma-ray track length modified by a Monte Carlo method.The algorithm is implemented by simulating the samples on the established platform.For the verification experiments of the algorithm,several cubic voxel samples were designed and manufactured.Experimental tests were conducted.The tomographic gamma scanning of transmission images is compared with the linear attenuation coefficients by the simulated values and experimental data with the algorithm and the reference values.The results show that the absolute relative errors of the reconstructed images are less than 5%.
基金the work is supported by scientific and technological fund of CNPC
文摘The problem of potential field inversion can be become that of solving system of linear equations by using of linear processing. There are a lot of algorithms for solving any system of linear equations, and the regularized method is one of the best algorithms. But there is a shortcoming in application with the regularized method, viz. the optimum regularized parameter must be determined by experience, so it is difficulty to obtain an optimum solution. In this paper, an iterative algorithm for solving any system of linear equations is discussed, and a sufficient and necessary condition of the algorithm convergence is presented and proved. The algorithm is convergent for any starting point, and the optimum solution can be obtained, in particular, there is no need to calculate the inverse matrix in the algorithm. The typical practical example shows the iterative algorithm is simple and practicable, and the inversion effect is better than that of regularized method.