Numerical treatment of engineering application problems often eventually results in a solution of systems of linear or nonlinear equations.The solution process using digital computational devices usually takes tremend...Numerical treatment of engineering application problems often eventually results in a solution of systems of linear or nonlinear equations.The solution process using digital computational devices usually takes tremendous time due to the extremely large size encountered in most real-world engineering applications.So,practical solvers for systems of linear and nonlinear equations based on multi graphic process units(GPUs)are proposed in order to accelerate the solving process.In the linear and nonlinear solvers,the preconditioned bi-conjugate gradient stable(PBi-CGstab)method and the Inexact Newton method are used to achieve the fast and stable convergence behavior.Multi-GPUs are utilized to obtain more data storage that large size problems need.展开更多
In this article, we study the complex oscillation problems of entire solutions to homogeneous and nonhomogeneous linear difference equations, and obtain some relations of the exponent of convergence of zeros and the o...In this article, we study the complex oscillation problems of entire solutions to homogeneous and nonhomogeneous linear difference equations, and obtain some relations of the exponent of convergence of zeros and the order of growth of entire solutions to complex linear difference equations.展开更多
In this article, the authors study the growth of certain second order linear differential equation f″+A(z)f′+B(z)f=0 and give precise estimates for the hyperorder of solutions of infinite order. Under similar ...In this article, the authors study the growth of certain second order linear differential equation f″+A(z)f′+B(z)f=0 and give precise estimates for the hyperorder of solutions of infinite order. Under similar conditions, higher order differential equations will be considered.展开更多
In this paper, we investigate the growth of solutions of higher order linear differential equations with meromorphic coefficients. Under certain conditions, we obtain precise estimation of growth order and hyper-order...In this paper, we investigate the growth of solutions of higher order linear differential equations with meromorphic coefficients. Under certain conditions, we obtain precise estimation of growth order and hyper-order of solutions of the equation.展开更多
In this article, we will derive local elliptic type gradient estimates for positive solutions of linear parabolic equations (△-e/et)u(x,t)+q(x,t)u^p(x,t)=0 and nonlinear parabolic equations (△-e/et)u(x,...In this article, we will derive local elliptic type gradient estimates for positive solutions of linear parabolic equations (△-e/et)u(x,t)+q(x,t)u^p(x,t)=0 and nonlinear parabolic equations (△-e/et)u(x,t)+h(x,t)u^p(x,t)=0(p 〉 1) on Riemannian manifolds.As applications, we obtain some theorems of Liouville type for positive ancient solutions of such equations. Our results generalize that of Souplet-Zhang ([1], Bull. London Math. Soc. 38(2006), 1045-1053) and the author ([2], Nonlinear Anal. 74 (2011), 5141-5146).展开更多
The main purpose of this article is to study the existence theories of global meromorphic solutions for some second-order linear differential equations with meromorphic coefficients, which perfect the solution theory ...The main purpose of this article is to study the existence theories of global meromorphic solutions for some second-order linear differential equations with meromorphic coefficients, which perfect the solution theory of such equations.展开更多
This article discusses the problems on the existence of meromorphic solutions of some higher order linear differential equations with meromorphic coefficients. Some nice results are obtained. And these results perfect...This article discusses the problems on the existence of meromorphic solutions of some higher order linear differential equations with meromorphic coefficients. Some nice results are obtained. And these results perfect the complex oscillation theory of meromorphic solutions of linear differential equations.展开更多
Many systems of fuzzy linear equations do not have solutions when the solution concept is based on α cuts and interval arithmetic. In this paper,we establish the relations between the systems of fuzzy linear equation...Many systems of fuzzy linear equations do not have solutions when the solution concept is based on α cuts and interval arithmetic. In this paper,we establish the relations between the systems of fuzzy linear equations and the possibilistic linear programming problems and present an alternative method of solving the systems of fuzzy linear equations.展开更多
This note contains three main results.Firstly,a complete solution of the Linear Non-Homogeneous Matrix Differential Equations(LNHMDEs)is presented that takes into account both the non-zero initial conditions of the ps...This note contains three main results.Firstly,a complete solution of the Linear Non-Homogeneous Matrix Differential Equations(LNHMDEs)is presented that takes into account both the non-zero initial conditions of the pseudo state and the nonzero initial conditions of the input.Secondly,in order to characterise the dynamics of the LNHMDEs correctly,some important concepts such as the state,slow state(smooth state)and fast state(impulsive state)are generalized to the LNHMDE case and the solution of the LNHMDEs is separated into the smooth(slow)response and the fast(implusive)response.As a third result,a new characterization of the impulsive free initial conditions of the LNHMDEs is given.展开更多
In this paper,we mainly investigate the dynamical properties of entire solutions of complex differential equations.With some conditions on coefficients,we prove that the set of common limiting directions of Julia sets...In this paper,we mainly investigate the dynamical properties of entire solutions of complex differential equations.With some conditions on coefficients,we prove that the set of common limiting directions of Julia sets of solutions,their derivatives and their primitives must have a definite range of measure.展开更多
In this paper, we mainly investigate entire solutions of complex differential equations with coefficients involving exponential functions, and obtain the dynamical properties of the solutions, their derivatives and pr...In this paper, we mainly investigate entire solutions of complex differential equations with coefficients involving exponential functions, and obtain the dynamical properties of the solutions, their derivatives and primitives. With some conditions on coefficients, for the solutions, their derivatives and their primitives, we consider the common limiting directions of Julia set and the existence of Baker wandering domain.展开更多
For domains composed by balls in C^n, this paper studies the boundary behaviour of Cauchy type integrals with discrete holomorphic kernels and the corresponding linear singular integral equation on each piece of smoot...For domains composed by balls in C^n, this paper studies the boundary behaviour of Cauchy type integrals with discrete holomorphic kernels and the corresponding linear singular integral equation on each piece of smooth lower dimensional edges on the boundary of the domain.展开更多
Advances in quantum computers threaten to break public key cryptosystems such as RSA, ECC, and EIGamal on the hardness of factoring or taking a discrete logarithm, while no quantum algorithms are found to solve certai...Advances in quantum computers threaten to break public key cryptosystems such as RSA, ECC, and EIGamal on the hardness of factoring or taking a discrete logarithm, while no quantum algorithms are found to solve certain mathematical problems on non-commutative algebraic structures until now. In this background, Majid Khan et al.proposed two novel public-key encryption schemes based on large abelian subgroup of general linear group over a residue ring. In this paper we show that the two schemes are not secure. We present that they are vulnerable to a structural attack and that, it only requires polynomial time complexity to retrieve the message from associated public keys respectively. Then we conduct a detailed analysis on attack methods and show corresponding algorithmic description and efficiency analysis respectively. After that, we propose an improvement assisted to enhance Majid Khan's scheme. In addition, we discuss possible lines of future work.展开更多
An improved recursive doubling algorithm for solving linear recurrence R <n,1>is given,whose parallel time complexity is (τ++τ.) logn when n processors are available,achieving the lower bound in array processo...An improved recursive doubling algorithm for solving linear recurrence R <n,1>is given,whose parallel time complexity is (τ++τ.) logn when n processors are available,achieving the lower bound in array processor type computation.展开更多
Finite time blow up of the solutions to Boussinesq equation with linear restoring force and combined power nonlinearities is studied. Sufficient conditions on the initial data for nonexistence of global solutions are ...Finite time blow up of the solutions to Boussinesq equation with linear restoring force and combined power nonlinearities is studied. Sufficient conditions on the initial data for nonexistence of global solutions are derived. The results are valid for initial data with arbitrary high positive energy. The proofs are based on the concave method and new sign preserving functionals.展开更多
The problem of transforming autonomous systems into Birkhoffian systems is studied. A reasonable form of linear autonomous Birkhoff equations is given. By combining them with the undetermined tensor method, a necessar...The problem of transforming autonomous systems into Birkhoffian systems is studied. A reasonable form of linear autonomous Birkhoff equations is given. By combining them with the undetermined tensor method, a necessary and sufficient condition for an autonomous system to have a representation in terms of linear autonomous Birkhoff equations is obtained. The methods of constructing Birkhoffian dynamical functions are given. Two examples are given to illustrate the application of the results.展开更多
In this paper,we study the hyperstability for the general linear equation f(ax+by)=Af(x)+Bf(y)in the setting of complete quasi-2-Banach spaces.We first extend the main fixed point result of Brzdek and Ciepliński(Acta...In this paper,we study the hyperstability for the general linear equation f(ax+by)=Af(x)+Bf(y)in the setting of complete quasi-2-Banach spaces.We first extend the main fixed point result of Brzdek and Ciepliński(Acta Mathematica Scientia,2018,38 B(2):377-390)to quasi-2-Banach spaces by defining an equivalent quasi-2-Banach space.Then we use this result to generalize the main results on the hyperstability for the general linear equation in quasi-2-Banach spaces.Our results improve and generalize many results of literature.展开更多
In this paper, the dynamical behaviour of a linear impulsive system is discussed both theoretically and numerically. The existence and the stability of period-one solution are discussed by using a discrete map. The co...In this paper, the dynamical behaviour of a linear impulsive system is discussed both theoretically and numerically. The existence and the stability of period-one solution are discussed by using a discrete map. The conditions of existence for flip bifurcation are derived by using the centre manifold theorem and bifurcation theorem. The bifurcation analysis shows that chaotic solutions appear via a cascade of period-doubling in some interval of parameters. Moreover, the periodic solutions, the bifurcation diagram, and the chaotic attractor, which show their consistence with the theoretical analyses, are given in an example.展开更多
In this work,we study the linearized Landau equation with soft potentials and show that the smooth solution to the Cauchy problem with initial datum in L^(2)(ℝ^(3))enjoys an analytic regularization effect,and that the...In this work,we study the linearized Landau equation with soft potentials and show that the smooth solution to the Cauchy problem with initial datum in L^(2)(ℝ^(3))enjoys an analytic regularization effect,and that the evolution of the analytic radius is the same as the heat equations.展开更多
The interaction between particle size and resin content is one of the most important structural parameters that can influence the accuracy of predictions about wood-composite properties. We developed three kinds of eq...The interaction between particle size and resin content is one of the most important structural parameters that can influence the accuracy of predictions about wood-composite properties. We developed three kinds of equation (linear, quadratic, and exponential) for each mechanical property of particleboard based on slenderness ratio and resin content at a constant density (0.7g cm -3 ). Results from SHAZAM software (version 9) suggested that the quadratic function was not significant, but the linear and exponential functions were significant. The interaction between particle size and resin content was analyzed by Maple 9 software. The results indicated that an exponential function can better describe the simultaneous effect of slenderness and resin content than a linear equation. Under constant resin content, particles with higher slenderness ratios increased more in modulus of rupture (MOR) and modulus of elasticity (MOE) than did particles with lower slenderness ratios. Edge withdrawal resistance (SWRe) values did not increase with increasing slenderness ratio.展开更多
文摘Numerical treatment of engineering application problems often eventually results in a solution of systems of linear or nonlinear equations.The solution process using digital computational devices usually takes tremendous time due to the extremely large size encountered in most real-world engineering applications.So,practical solvers for systems of linear and nonlinear equations based on multi graphic process units(GPUs)are proposed in order to accelerate the solving process.In the linear and nonlinear solvers,the preconditioned bi-conjugate gradient stable(PBi-CGstab)method and the Inexact Newton method are used to achieve the fast and stable convergence behavior.Multi-GPUs are utilized to obtain more data storage that large size problems need.
基金supported by the National Natural Science Foundation of China (11171119 and 10871076)
文摘In this article, we study the complex oscillation problems of entire solutions to homogeneous and nonhomogeneous linear difference equations, and obtain some relations of the exponent of convergence of zeros and the order of growth of entire solutions to complex linear difference equations.
基金the National Natural Science Foundation of China(10161006,10571044)the Natural Science Foundation of Guangdong Prov(06025059)
文摘In this article, the authors study the growth of certain second order linear differential equation f″+A(z)f′+B(z)f=0 and give precise estimates for the hyperorder of solutions of infinite order. Under similar conditions, higher order differential equations will be considered.
文摘In this paper, we investigate the growth of solutions of higher order linear differential equations with meromorphic coefficients. Under certain conditions, we obtain precise estimation of growth order and hyper-order of solutions of the equation.
基金supported by the National Science Foundation of China(41275063 and 11401575)
文摘In this article, we will derive local elliptic type gradient estimates for positive solutions of linear parabolic equations (△-e/et)u(x,t)+q(x,t)u^p(x,t)=0 and nonlinear parabolic equations (△-e/et)u(x,t)+h(x,t)u^p(x,t)=0(p 〉 1) on Riemannian manifolds.As applications, we obtain some theorems of Liouville type for positive ancient solutions of such equations. Our results generalize that of Souplet-Zhang ([1], Bull. London Math. Soc. 38(2006), 1045-1053) and the author ([2], Nonlinear Anal. 74 (2011), 5141-5146).
基金Supported by the National Natural Science Foundation of China(11101096 )Guangdong Natural Science Foundation (S2012010010376, S201204006711)
文摘The main purpose of this article is to study the existence theories of global meromorphic solutions for some second-order linear differential equations with meromorphic coefficients, which perfect the solution theory of such equations.
基金supported by the National Natural Science Foundation of China (11101096)
文摘This article discusses the problems on the existence of meromorphic solutions of some higher order linear differential equations with meromorphic coefficients. Some nice results are obtained. And these results perfect the complex oscillation theory of meromorphic solutions of linear differential equations.
文摘Many systems of fuzzy linear equations do not have solutions when the solution concept is based on α cuts and interval arithmetic. In this paper,we establish the relations between the systems of fuzzy linear equations and the possibilistic linear programming problems and present an alternative method of solving the systems of fuzzy linear equations.
文摘This note contains three main results.Firstly,a complete solution of the Linear Non-Homogeneous Matrix Differential Equations(LNHMDEs)is presented that takes into account both the non-zero initial conditions of the pseudo state and the nonzero initial conditions of the input.Secondly,in order to characterise the dynamics of the LNHMDEs correctly,some important concepts such as the state,slow state(smooth state)and fast state(impulsive state)are generalized to the LNHMDE case and the solution of the LNHMDEs is separated into the smooth(slow)response and the fast(implusive)response.As a third result,a new characterization of the impulsive free initial conditions of the LNHMDEs is given.
基金supported by Shanghai Center for Mathematical Sci-ences,China Scholarship Council(201206105015)National Science Foundation of China(11171119,11001057,11571049)Natural Science Foundation of Guangdong Province in China(2014A030313422)
文摘In this paper,we mainly investigate the dynamical properties of entire solutions of complex differential equations.With some conditions on coefficients,we prove that the set of common limiting directions of Julia sets of solutions,their derivatives and their primitives must have a definite range of measure.
基金supported by Shanghai Center for Mathematical Science China Scholarship Council(201206105015)the National Science Foundation of China(11171119,11001057,11571049)the Natural Science Foundation of Guangdong Province in China(2014A030313422)
文摘In this paper, we mainly investigate entire solutions of complex differential equations with coefficients involving exponential functions, and obtain the dynamical properties of the solutions, their derivatives and primitives. With some conditions on coefficients, for the solutions, their derivatives and their primitives, we consider the common limiting directions of Julia set and the existence of Baker wandering domain.
基金Project supported by the National Science Foundation of China (10271097)
文摘For domains composed by balls in C^n, this paper studies the boundary behaviour of Cauchy type integrals with discrete holomorphic kernels and the corresponding linear singular integral equation on each piece of smooth lower dimensional edges on the boundary of the domain.
基金supported in part by the National Natural Science Foundation of China(Grant Nos.61303212,61170080,61202386)the State Key Program of National Natural Science of China(Grant Nos.61332019,U1135004)+2 种基金the Major Research Plan of the National Natural Science Foundation of China(Grant No.91018008)Major State Basic Research Development Program of China(973 Program)(No.2014CB340600)the Hubei Natural Science Foundation of China(Grant Nos.2011CDB453,2014CFB440)
文摘Advances in quantum computers threaten to break public key cryptosystems such as RSA, ECC, and EIGamal on the hardness of factoring or taking a discrete logarithm, while no quantum algorithms are found to solve certain mathematical problems on non-commutative algebraic structures until now. In this background, Majid Khan et al.proposed two novel public-key encryption schemes based on large abelian subgroup of general linear group over a residue ring. In this paper we show that the two schemes are not secure. We present that they are vulnerable to a structural attack and that, it only requires polynomial time complexity to retrieve the message from associated public keys respectively. Then we conduct a detailed analysis on attack methods and show corresponding algorithmic description and efficiency analysis respectively. After that, we propose an improvement assisted to enhance Majid Khan's scheme. In addition, we discuss possible lines of future work.
文摘An improved recursive doubling algorithm for solving linear recurrence R <n,1>is given,whose parallel time complexity is (τ++τ.) logn when n processors are available,achieving the lower bound in array processor type computation.
基金partially supported by Grant No.DFNI I-02/9 of the Bulgarian Science Fund
文摘Finite time blow up of the solutions to Boussinesq equation with linear restoring force and combined power nonlinearities is studied. Sufficient conditions on the initial data for nonexistence of global solutions are derived. The results are valid for initial data with arbitrary high positive energy. The proofs are based on the concave method and new sign preserving functionals.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10932002,11172120,and 11202090)
文摘The problem of transforming autonomous systems into Birkhoffian systems is studied. A reasonable form of linear autonomous Birkhoff equations is given. By combining them with the undetermined tensor method, a necessary and sufficient condition for an autonomous system to have a representation in terms of linear autonomous Birkhoff equations is obtained. The methods of constructing Birkhoffian dynamical functions are given. Two examples are given to illustrate the application of the results.
基金AISTDF,DST India for the research grant vide project No.CRD/2018/000017。
文摘In this paper,we study the hyperstability for the general linear equation f(ax+by)=Af(x)+Bf(y)in the setting of complete quasi-2-Banach spaces.We first extend the main fixed point result of Brzdek and Ciepliński(Acta Mathematica Scientia,2018,38 B(2):377-390)to quasi-2-Banach spaces by defining an equivalent quasi-2-Banach space.Then we use this result to generalize the main results on the hyperstability for the general linear equation in quasi-2-Banach spaces.Our results improve and generalize many results of literature.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10572011, 100461002, and 10661005)the Natural Science Foundation of Guangxi Province, China (Grant Nos 0575092 and 0832244)
文摘In this paper, the dynamical behaviour of a linear impulsive system is discussed both theoretically and numerically. The existence and the stability of period-one solution are discussed by using a discrete map. The conditions of existence for flip bifurcation are derived by using the centre manifold theorem and bifurcation theorem. The bifurcation analysis shows that chaotic solutions appear via a cascade of period-doubling in some interval of parameters. Moreover, the periodic solutions, the bifurcation diagram, and the chaotic attractor, which show their consistence with the theoretical analyses, are given in an example.
基金supported by the Natural Science Foundation of Hubei Province,China (2022CFB444)the Key Laboratory of Mathematical Modelling and High Performance Computing of Air Vehicles (NUAA)+1 种基金supported by the NSFC (12031006)the Fundamental Research Funds for the Central Universities of China.
文摘In this work,we study the linearized Landau equation with soft potentials and show that the smooth solution to the Cauchy problem with initial datum in L^(2)(ℝ^(3))enjoys an analytic regularization effect,and that the evolution of the analytic radius is the same as the heat equations.
文摘The interaction between particle size and resin content is one of the most important structural parameters that can influence the accuracy of predictions about wood-composite properties. We developed three kinds of equation (linear, quadratic, and exponential) for each mechanical property of particleboard based on slenderness ratio and resin content at a constant density (0.7g cm -3 ). Results from SHAZAM software (version 9) suggested that the quadratic function was not significant, but the linear and exponential functions were significant. The interaction between particle size and resin content was analyzed by Maple 9 software. The results indicated that an exponential function can better describe the simultaneous effect of slenderness and resin content than a linear equation. Under constant resin content, particles with higher slenderness ratios increased more in modulus of rupture (MOR) and modulus of elasticity (MOE) than did particles with lower slenderness ratios. Edge withdrawal resistance (SWRe) values did not increase with increasing slenderness ratio.