Lime, which is a frequently used activating agent of fly ash (FA), has two main states: slaked lime and quick lime. We studied the effects of slaked lime and quick lime on activating FA, and discussed their kinetics. ...Lime, which is a frequently used activating agent of fly ash (FA), has two main states: slaked lime and quick lime. We studied the effects of slaked lime and quick lime on activating FA, and discussed their kinetics. The results show that slaked lime is more beneficial for activating FA than quick lime given the condition of equivalent CaO amount. The use of slaked lime has superiority in technology and economy on activating FA. Theoretical analysis revealed that the kinetic constant of the activation reaction using slaked lime is higher than using quick lime, credited to the better volume stability and fineness, and smaller water demand of slaked lime.展开更多
Human beings have consumed lemon(Citrus limon)and lime(Citrus aurantifolia or Citrus latiflia)for thousands of years.Among the variety of citrus families,lemon and lime are originated from the hybridization of citron ...Human beings have consumed lemon(Citrus limon)and lime(Citrus aurantifolia or Citrus latiflia)for thousands of years.Among the variety of citrus families,lemon and lime are originated from the hybridization of citron with primitive papeda,hence they are similar from the nutritional and organoleptic standpoints,whereas very different from other citrus species such as orange and mandarin.Except for fresh produce,a signifi cant percentage of lemon and lime are processed and separated as juice,essential oils,pulps and other products.Lemon and lime juice or fruit itself is rich in vitamins,minerals and flavonoids which are rich sources for human nutrition.Consumption of lemon and lime fruit or juice are benefi cial for human health in the scope of urinary citrate increase,oxidative stress relief,improvement in lipid profi les and infl ammation markers,neuroprotective effects among others.These beneficial effects of lemon and lime are not only because of their high vitamin C content but also other bioactive micronutrients such as fl avonoids.Essential oils from lemon and lime have fresh and zesty aroma for perfumery and flavor applications for centuries.Compared with orange or mandarin,the integrated review for lemon and lime dietary bioactive compounds and essential oils is scarce.Therefore,in this review,we introduced the historical cultivation,consumption and process of lemon and lime,discussed the chemical and biological activities of phytochemicals in lemon and lime fruits and juice,and summarized volatile and non-volatile components in lemon and lime oil.This review may provide a comprehensive perspective for entire lemon and lime industry as well as their scientifi c values.展开更多
红层泥岩水敏性高,作路基填料时可用石灰改良。受季节变化影响,路基基床经历干湿循环,导致服役性能降低。为研究干湿循环下改良填料力学特性劣化规律,开展一系列干湿循环试验、无侧限抗压试验和弯曲元试验测定改良填料无侧限抗压强度和...红层泥岩水敏性高,作路基填料时可用石灰改良。受季节变化影响,路基基床经历干湿循环,导致服役性能降低。为研究干湿循环下改良填料力学特性劣化规律,开展一系列干湿循环试验、无侧限抗压试验和弯曲元试验测定改良填料无侧限抗压强度和小应变刚度。结合连续滴水扫描电镜(scanning electron microscope,简称SEM)试验,揭示干湿循环后填料微观结构劣化特征。结果表明:低幅度循环下试样在干侧和湿侧均产生体胀。高幅度循环下试样在湿侧产生体胀。在干侧先产生体缩,随循环次数增加,即使含水率较低,试样也产生体胀。体胀导致强度和小应变刚度均有不同程度的劣化。当试样产生体缩时,强度有所增长,但小应变刚度由于裂缝衍生而持续衰减。试样强度随损伤体变可用统一劣化方程表示。但高幅度循环下试样干燥后的小应变刚度远低于劣化线,且劣化速率远大于强度。试样滴水后能维持基本形貌,但观察到团聚体松散、微粒剥落和新生裂缝等结构劣化特征,从而导致宏观力学性能衰减。展开更多
基金Funded by Natural Science Foundation of China under the grant No. 50672137
文摘Lime, which is a frequently used activating agent of fly ash (FA), has two main states: slaked lime and quick lime. We studied the effects of slaked lime and quick lime on activating FA, and discussed their kinetics. The results show that slaked lime is more beneficial for activating FA than quick lime given the condition of equivalent CaO amount. The use of slaked lime has superiority in technology and economy on activating FA. Theoretical analysis revealed that the kinetic constant of the activation reaction using slaked lime is higher than using quick lime, credited to the better volume stability and fineness, and smaller water demand of slaked lime.
基金supported by Hubei Science and Technology Plan Key Project(G2019ABA100).
文摘Human beings have consumed lemon(Citrus limon)and lime(Citrus aurantifolia or Citrus latiflia)for thousands of years.Among the variety of citrus families,lemon and lime are originated from the hybridization of citron with primitive papeda,hence they are similar from the nutritional and organoleptic standpoints,whereas very different from other citrus species such as orange and mandarin.Except for fresh produce,a signifi cant percentage of lemon and lime are processed and separated as juice,essential oils,pulps and other products.Lemon and lime juice or fruit itself is rich in vitamins,minerals and flavonoids which are rich sources for human nutrition.Consumption of lemon and lime fruit or juice are benefi cial for human health in the scope of urinary citrate increase,oxidative stress relief,improvement in lipid profi les and infl ammation markers,neuroprotective effects among others.These beneficial effects of lemon and lime are not only because of their high vitamin C content but also other bioactive micronutrients such as fl avonoids.Essential oils from lemon and lime have fresh and zesty aroma for perfumery and flavor applications for centuries.Compared with orange or mandarin,the integrated review for lemon and lime dietary bioactive compounds and essential oils is scarce.Therefore,in this review,we introduced the historical cultivation,consumption and process of lemon and lime,discussed the chemical and biological activities of phytochemicals in lemon and lime fruits and juice,and summarized volatile and non-volatile components in lemon and lime oil.This review may provide a comprehensive perspective for entire lemon and lime industry as well as their scientifi c values.
文摘红层泥岩水敏性高,作路基填料时可用石灰改良。受季节变化影响,路基基床经历干湿循环,导致服役性能降低。为研究干湿循环下改良填料力学特性劣化规律,开展一系列干湿循环试验、无侧限抗压试验和弯曲元试验测定改良填料无侧限抗压强度和小应变刚度。结合连续滴水扫描电镜(scanning electron microscope,简称SEM)试验,揭示干湿循环后填料微观结构劣化特征。结果表明:低幅度循环下试样在干侧和湿侧均产生体胀。高幅度循环下试样在湿侧产生体胀。在干侧先产生体缩,随循环次数增加,即使含水率较低,试样也产生体胀。体胀导致强度和小应变刚度均有不同程度的劣化。当试样产生体缩时,强度有所增长,但小应变刚度由于裂缝衍生而持续衰减。试样强度随损伤体变可用统一劣化方程表示。但高幅度循环下试样干燥后的小应变刚度远低于劣化线,且劣化速率远大于强度。试样滴水后能维持基本形貌,但观察到团聚体松散、微粒剥落和新生裂缝等结构劣化特征,从而导致宏观力学性能衰减。