In recent years,several failures of double circuit transmission line on the same tower due to lightning were happened in Beijing power grid.Although it can be reclosed successful,the lightning strike caused a grave th...In recent years,several failures of double circuit transmission line on the same tower due to lightning were happened in Beijing power grid.Although it can be reclosed successful,the lightning strike caused a grave threat to the power grid security.The cause of the accident and the accident process were studied for the sake of further understanding of the impact of lightning on power grid.As an example,110 kV double circuit transmission line(Xilong-line) was analyzed.At first,the system topology was given.Through the analysis on relay protection actions and the fault recorder data,over voltage on the insulator strings was calculated.Based on the analysis and the calculation,accident cause and the process were presented respectively.Secondly,it comes to the conclusion that the lightning failure was caused by counterattack.The wave of the lightning over voltage would spread to the not grounded neutral point of the transformers,and make the neutral protective gap breakdown,then cause freewheeling with the frequency of 50 Hz.As results of the relay protection,the double circuit transmission line all tripped out.Finally,the causes of the accident were proposed that included terrain features,large corner towers,strong thunderstorm weather and poor grounded contact of the tower.展开更多
Referring to the 1 248 survey data of rural population in 14 provinces of China, the influencing factors of trip time choice were analyzed. Based on the basic theory of disaggregate model and its modelling method, nin...Referring to the 1 248 survey data of rural population in 14 provinces of China, the influencing factors of trip time choice were analyzed. Based on the basic theory of disaggregate model and its modelling method, nine grades were selected as the alternatives of trip time, the variables affecting time choice and the method getting their values were determined, and a multinomial logit (MNL) model was developed. Another 1 200 trip data of rural population were selected to testify the model's validity. The result shows that the maximum absolute error of each period between calculated value and statistic is 3.6%, so MNL model has high calculation accuracy.展开更多
The operation data obtained abroad indicates that shielding failure in UHV transmission lines mostly accounts for the tripping-out accidents introduced by lightning striking the transmission line.Based on the discharg...The operation data obtained abroad indicates that shielding failure in UHV transmission lines mostly accounts for the tripping-out accidents introduced by lightning striking the transmission line.Based on the discharge theories of long air gap and randomness theory,a leader progression model of lightning shielding failure is presented in this paper.The random characteristics of the downward and upward leader are simulated in this model.The ground slope angel is also considered in this model by using coordinate transformation.Moreover,the system voltage is also taken into consideration in this model.The simulation results show that the good agreement between this model and the field data.And the results suggest that return striking exist obviously in UHV transmission line.展开更多
雷电作为自然界一种极端天气的表现形式,常给地基、地面、高耸建筑等造成严重破坏。工程防雷措施依赖于土体雷电冲击特性。现阶段,研究人员大多从电气工程角度探究雷电冲击土体造成的危害,但因学科间的差异与局限,雷电作用下岩土工程与...雷电作为自然界一种极端天气的表现形式,常给地基、地面、高耸建筑等造成严重破坏。工程防雷措施依赖于土体雷电冲击特性。现阶段,研究人员大多从电气工程角度探究雷电冲击土体造成的危害,但因学科间的差异与局限,雷电作用下岩土工程与电气工程的交叉融合方面的研究十分欠缺。本文构建土体雷电冲击模型,基于电弧通道能量平衡方程计算雷电放电产生的冲击波压力,将冲击波压力作为外加荷载作用在土体中,并通过修正Mohr-Coulomb屈服准则考虑动荷载下土体应变硬化,利用土体的理想锁定状态方程(Idealized Locked Equation of State)和动态扩孔方法考虑冲击波非稳态加载,探究雷电冲击下土体的弹塑性界面及应力时程变化规律。研究表明:在雷电冲击下,土体应力随时间变化呈现先陡增后迅速衰减的趋势,应力突变点表明土体此时正处于弹塑性交界面;在应力突变点之前,土体附加应力趋于0,处于弹性状态。任一时刻下,随着逐渐远离雷电冲击点,土体应力呈现迅速衰减的趋势,应力发生突变骤降表明此处土体正处于弹塑性交界面;在突变点之后土体附加应力趋于0,处于弹性状态。土体压缩系数对土体的弹塑性界面变化具有显著影响,随着压缩指标增大,土体塑性区半径逐渐减小;随着土体黏聚力逐渐增大,土体塑性区半径逐渐减小;增大土体弹性模量可以增大土体塑性区半径,但变化幅度相对较小;电流波形对土体塑性区中的应力会产生较大影响,而对土体弹性区影响较小。展开更多
文摘In recent years,several failures of double circuit transmission line on the same tower due to lightning were happened in Beijing power grid.Although it can be reclosed successful,the lightning strike caused a grave threat to the power grid security.The cause of the accident and the accident process were studied for the sake of further understanding of the impact of lightning on power grid.As an example,110 kV double circuit transmission line(Xilong-line) was analyzed.At first,the system topology was given.Through the analysis on relay protection actions and the fault recorder data,over voltage on the insulator strings was calculated.Based on the analysis and the calculation,accident cause and the process were presented respectively.Secondly,it comes to the conclusion that the lightning failure was caused by counterattack.The wave of the lightning over voltage would spread to the not grounded neutral point of the transformers,and make the neutral protective gap breakdown,then cause freewheeling with the frequency of 50 Hz.As results of the relay protection,the double circuit transmission line all tripped out.Finally,the causes of the accident were proposed that included terrain features,large corner towers,strong thunderstorm weather and poor grounded contact of the tower.
基金Project(51178158) supported by the National Natural Science Foundation of ChinaProjects(2010HGZY0010, 2011HGBZ0936) supported by the Fundamental Research Funds for the Central Universities of China
文摘Referring to the 1 248 survey data of rural population in 14 provinces of China, the influencing factors of trip time choice were analyzed. Based on the basic theory of disaggregate model and its modelling method, nine grades were selected as the alternatives of trip time, the variables affecting time choice and the method getting their values were determined, and a multinomial logit (MNL) model was developed. Another 1 200 trip data of rural population were selected to testify the model's validity. The result shows that the maximum absolute error of each period between calculated value and statistic is 3.6%, so MNL model has high calculation accuracy.
基金Project Supported by National Natural Science Foundation of China (50707036), Key Project of the National Eleventh-five Year Research Program of China (2006BAA02A18).
文摘The operation data obtained abroad indicates that shielding failure in UHV transmission lines mostly accounts for the tripping-out accidents introduced by lightning striking the transmission line.Based on the discharge theories of long air gap and randomness theory,a leader progression model of lightning shielding failure is presented in this paper.The random characteristics of the downward and upward leader are simulated in this model.The ground slope angel is also considered in this model by using coordinate transformation.Moreover,the system voltage is also taken into consideration in this model.The simulation results show that the good agreement between this model and the field data.And the results suggest that return striking exist obviously in UHV transmission line.
文摘雷电作为自然界一种极端天气的表现形式,常给地基、地面、高耸建筑等造成严重破坏。工程防雷措施依赖于土体雷电冲击特性。现阶段,研究人员大多从电气工程角度探究雷电冲击土体造成的危害,但因学科间的差异与局限,雷电作用下岩土工程与电气工程的交叉融合方面的研究十分欠缺。本文构建土体雷电冲击模型,基于电弧通道能量平衡方程计算雷电放电产生的冲击波压力,将冲击波压力作为外加荷载作用在土体中,并通过修正Mohr-Coulomb屈服准则考虑动荷载下土体应变硬化,利用土体的理想锁定状态方程(Idealized Locked Equation of State)和动态扩孔方法考虑冲击波非稳态加载,探究雷电冲击下土体的弹塑性界面及应力时程变化规律。研究表明:在雷电冲击下,土体应力随时间变化呈现先陡增后迅速衰减的趋势,应力突变点表明土体此时正处于弹塑性交界面;在应力突变点之前,土体附加应力趋于0,处于弹性状态。任一时刻下,随着逐渐远离雷电冲击点,土体应力呈现迅速衰减的趋势,应力发生突变骤降表明此处土体正处于弹塑性交界面;在突变点之后土体附加应力趋于0,处于弹性状态。土体压缩系数对土体的弹塑性界面变化具有显著影响,随着压缩指标增大,土体塑性区半径逐渐减小;随着土体黏聚力逐渐增大,土体塑性区半径逐渐减小;增大土体弹性模量可以增大土体塑性区半径,但变化幅度相对较小;电流波形对土体塑性区中的应力会产生较大影响,而对土体弹性区影响较小。