We have investigated the properties of organic light emitting diodes (OLEDs) with a nanopillar patterning structure at organic-metal or organic-organic interfaces. The results demonstrate that the introduction of a ...We have investigated the properties of organic light emitting diodes (OLEDs) with a nanopillar patterning structure at organic-metal or organic-organic interfaces. The results demonstrate that the introduction of a nanopillar structure can improve the light extraction efficiency greatly. We also find that the number, height, and position of nanopillars all affect the light extraction of OLEDs. The maximum power efficiency of a device with an optimized nanopillar patterning mode can be improved to 2.47 times that of the reference device. This enhancement in light extraction originates from the improved injected carriers, the broadened charge recombination zone, and the intensified wave guiding effects.展开更多
Two foundational factors (escape cone and transmissivity) about light extraction of light emitting diodes (LEDs) are discussed. According to these factors, a new process to simulate the light extraction of LEDs ba...Two foundational factors (escape cone and transmissivity) about light extraction of light emitting diodes (LEDs) are discussed. According to these factors, a new process to simulate the light extraction of LEDs based on the Monte Carlo method has been provided. The improved method is to deal with the reflection and refraction of light (beam of light) at the interface between two mediums approximately. In addition, light extraction of traditional LEDs is simulated by different processes with the same structure and parameters. The results show that the reflection and refraction of light processed approximately are accurate enough for analyzing LEDs structure. This method saves much time and improves efficiency in the simulation of light extraction of LEDs.展开更多
The light extraction efficiencies have been calculated for various InGaN/GaN multiple quantum well nanostructure light-emitting diodes including nanopillar, nanorough of P-CaN surface, coreshell and nano-interlayer st...The light extraction efficiencies have been calculated for various InGaN/GaN multiple quantum well nanostructure light-emitting diodes including nanopillar, nanorough of P-CaN surface, coreshell and nano-interlayer structure. From the calculated results we can see that the light extraction efficiency is remarkably improved in the nanostructures, especially those with an InGaN or AlCaN nano-interlayer. With a 420-nm luminescence wavelength, the light extraction efficiency can reach as high as 65% for the InGaN or AlGaN nano-interlayer structure with appropriate In or Al content while only 26% for the planar structure.展开更多
We report a feasible method to realize tun able surface plasm on-polarit on(SPP)res onance in orga nic light-emitt ing devices(OLEDs)by emplo ying corrugated Ag-Al alloy electrodes.The excited SPP res onance in duced ...We report a feasible method to realize tun able surface plasm on-polarit on(SPP)res onance in orga nic light-emitt ing devices(OLEDs)by emplo ying corrugated Ag-Al alloy electrodes.The excited SPP res onance in duced by the periodic corrugations can be precisely tuned based on the composition ratios of the Ag-Al alloy electrodes.With an appropriate composition ratio of the corrugated alloy electrode,the photons trapped in SPP modes are recovered and extracted effectively.The 25%in creaseme nt in luminance and 21%enhan ceme nt in curre nt efficie ncy have bee n achieved by using the corrugated Ag-Al alloy electrodes in OLEDs.展开更多
We investigate the polarization-induced doping in the gradient variation of Al composition in the pAl_(0.75)Ga_(0.25)N/Al_xGa_(1-x)N hole injection layer(HIL)for deep ultraviolet light-emitting diodes(DUV-LEDs)with an...We investigate the polarization-induced doping in the gradient variation of Al composition in the pAl_(0.75)Ga_(0.25)N/Al_xGa_(1-x)N hole injection layer(HIL)for deep ultraviolet light-emitting diodes(DUV-LEDs)with an ultrathin p-GaN(4 nm)ohmic contact layer capable of emitting 277 nm.The experimental results show that the external quantum efficiency(EQE)and wall plug efficiency(WPE)of the structure graded from 0.75 to 0.55 in the HIL reach 5.49%and 5.04%,which are improved significantly by 182%and 209%,respectively,compared with the structure graded from 0.75 to 0.45,exhibiting a tremendous improvement.Both theoretical speculations and simulation results support that the larger the difference between 0.75 and x in the HIL,the higher the hole concentration that should be induced;thus,the DUV-LED has a higher internal quantum efficiency(IQE).Meanwhile,as the value of x decreases,the absorption of the DUV light emitted from the active region by the HIL is enhanced,reducing the light extraction efficiency(LEE).The IQE and LEE together affect the EQE performance of DUV-LEDs.To trade off the contradiction between the enhanced IQE and decreased LEE caused by the decrease in Al composition,the Al composition in the HIL was optimized through theoretical calculations and experiments.展开更多
With the rapid development of the machining and manufacturing industry,welding has been widely used in forming connections of structural parts.At present,manual methods are often used for welding and quality inspectio...With the rapid development of the machining and manufacturing industry,welding has been widely used in forming connections of structural parts.At present,manual methods are often used for welding and quality inspection,with low efficiency and unstable product quality.Due to the requirements of visual inspection of weld feature size,a visual inspection system for weld feature size based on line structured light(LSL)is designed and built in this paper.An adaptive light stripe sub-pixel center extraction algorithm and a feature point extraction algorithm for welding light stripe are proposed.The experiment results show that the detection error of the weld width is 0.216 mm,the detection error of the remaining height is 0.035 mm,the single measurement costs 109 ms,and the inspection stability and repeatability of the system is 1%.Our approach can meet the online detection requirements of practical applications.展开更多
The influence of buffer layer growth conditions on the crystal quality and residual stress of GaN film grown on silicon carbide substrate is investigated. It is found that the A1GaN nucleation layer with high growth t...The influence of buffer layer growth conditions on the crystal quality and residual stress of GaN film grown on silicon carbide substrate is investigated. It is found that the A1GaN nucleation layer with high growth temperature can efficiently decrease the dislocation density and stress of the GaN film compared with A1N buffer layer. To increase the light extraction efficiency of GaN-based LEDs on SiC substrate, flip-chip structure and thin film flip-chip structure were designed and optimized. The fabricated blue LED had a maximum wall-plug efficiency of 72% at 80 mA. At 350 mA, the output power, the Vf, the dominant wavelength, and the wall-plug efficiency of the blue LED were 644 roW, 2.95 V, 460 nm, and 63%, respectively.展开更多
基金Project supported by the Program for Changjiang Scholar and Innovation Research Team in Universities of China(Grant No.IRT0972)the International Science&Technology Cooperation Program of China(Grant No.2012DFR50460)+1 种基金the National Natural Scientific Foundation of China(Grant Nos.21071108,60976018,21101111,61274056,and 61205179)the Key Innovative Research Team in Science and Technology of Shangxi Province,China(Grant No.2012041011)
文摘We have investigated the properties of organic light emitting diodes (OLEDs) with a nanopillar patterning structure at organic-metal or organic-organic interfaces. The results demonstrate that the introduction of a nanopillar structure can improve the light extraction efficiency greatly. We also find that the number, height, and position of nanopillars all affect the light extraction of OLEDs. The maximum power efficiency of a device with an optimized nanopillar patterning mode can be improved to 2.47 times that of the reference device. This enhancement in light extraction originates from the improved injected carriers, the broadened charge recombination zone, and the intensified wave guiding effects.
文摘Two foundational factors (escape cone and transmissivity) about light extraction of light emitting diodes (LEDs) are discussed. According to these factors, a new process to simulate the light extraction of LEDs based on the Monte Carlo method has been provided. The improved method is to deal with the reflection and refraction of light (beam of light) at the interface between two mediums approximately. In addition, light extraction of traditional LEDs is simulated by different processes with the same structure and parameters. The results show that the reflection and refraction of light processed approximately are accurate enough for analyzing LEDs structure. This method saves much time and improves efficiency in the simulation of light extraction of LEDs.
基金Project supported by the National Science Fund for Distinguished Young Scholars of China (Grant No.60925017)the National Natural Science Foundation of China (Grant Nos.10990100 and 60836003)+2 种基金the National Basic Research Program of China (Grant No.2007CB936700)the National High Technology Research and Development Program of China (Grant No.2007AA03Z401)the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No.ISCAS2009T05O9S4050000)
文摘The light extraction efficiencies have been calculated for various InGaN/GaN multiple quantum well nanostructure light-emitting diodes including nanopillar, nanorough of P-CaN surface, coreshell and nano-interlayer structure. From the calculated results we can see that the light extraction efficiency is remarkably improved in the nanostructures, especially those with an InGaN or AlCaN nano-interlayer. With a 420-nm luminescence wavelength, the light extraction efficiency can reach as high as 65% for the InGaN or AlGaN nano-interlayer structure with appropriate In or Al content while only 26% for the planar structure.
基金This work was supported by the National Key Research and Development Program of China and the National Natural Science Foundation of China(NSFC)under Grants No.2020YFA0715000 and No.61825402.
文摘We report a feasible method to realize tun able surface plasm on-polarit on(SPP)res onance in orga nic light-emitt ing devices(OLEDs)by emplo ying corrugated Ag-Al alloy electrodes.The excited SPP res onance in duced by the periodic corrugations can be precisely tuned based on the composition ratios of the Ag-Al alloy electrodes.With an appropriate composition ratio of the corrugated alloy electrode,the photons trapped in SPP modes are recovered and extracted effectively.The 25%in creaseme nt in luminance and 21%enhan ceme nt in curre nt efficie ncy have bee n achieved by using the corrugated Ag-Al alloy electrodes in OLEDs.
基金the National Natural Science Foundation of China(Grant No.62104085)the Innovation/Entrepreneurship Program of Jiangsu Province,China(Grant No.JSSCTD202146)。
文摘We investigate the polarization-induced doping in the gradient variation of Al composition in the pAl_(0.75)Ga_(0.25)N/Al_xGa_(1-x)N hole injection layer(HIL)for deep ultraviolet light-emitting diodes(DUV-LEDs)with an ultrathin p-GaN(4 nm)ohmic contact layer capable of emitting 277 nm.The experimental results show that the external quantum efficiency(EQE)and wall plug efficiency(WPE)of the structure graded from 0.75 to 0.55 in the HIL reach 5.49%and 5.04%,which are improved significantly by 182%and 209%,respectively,compared with the structure graded from 0.75 to 0.45,exhibiting a tremendous improvement.Both theoretical speculations and simulation results support that the larger the difference between 0.75 and x in the HIL,the higher the hole concentration that should be induced;thus,the DUV-LED has a higher internal quantum efficiency(IQE).Meanwhile,as the value of x decreases,the absorption of the DUV light emitted from the active region by the HIL is enhanced,reducing the light extraction efficiency(LEE).The IQE and LEE together affect the EQE performance of DUV-LEDs.To trade off the contradiction between the enhanced IQE and decreased LEE caused by the decrease in Al composition,the Al composition in the HIL was optimized through theoretical calculations and experiments.
基金supported by the National Natural Science Foundation of China(No. 51975293)the Aeronautical Science Foundation of China(No. 2019ZD052010)
文摘With the rapid development of the machining and manufacturing industry,welding has been widely used in forming connections of structural parts.At present,manual methods are often used for welding and quality inspection,with low efficiency and unstable product quality.Due to the requirements of visual inspection of weld feature size,a visual inspection system for weld feature size based on line structured light(LSL)is designed and built in this paper.An adaptive light stripe sub-pixel center extraction algorithm and a feature point extraction algorithm for welding light stripe are proposed.The experiment results show that the detection error of the weld width is 0.216 mm,the detection error of the remaining height is 0.035 mm,the single measurement costs 109 ms,and the inspection stability and repeatability of the system is 1%.Our approach can meet the online detection requirements of practical applications.
基金Project supported by the National Basic Research Program of China(Grant No.2011CB301904)the National Natural Science Foundation of China(Grant Nos.11134006 and 61327808)
文摘The influence of buffer layer growth conditions on the crystal quality and residual stress of GaN film grown on silicon carbide substrate is investigated. It is found that the A1GaN nucleation layer with high growth temperature can efficiently decrease the dislocation density and stress of the GaN film compared with A1N buffer layer. To increase the light extraction efficiency of GaN-based LEDs on SiC substrate, flip-chip structure and thin film flip-chip structure were designed and optimized. The fabricated blue LED had a maximum wall-plug efficiency of 72% at 80 mA. At 350 mA, the output power, the Vf, the dominant wavelength, and the wall-plug efficiency of the blue LED were 644 roW, 2.95 V, 460 nm, and 63%, respectively.