期刊文献+
共找到13,927篇文章
< 1 2 250 >
每页显示 20 50 100
Flexible Graphene Field‑Effect Transistors and Their Application in Flexible Biomedical Sensing
1
作者 Mingyuan Sun Shuai Wang +5 位作者 Yanbo Liang Chao Wang Yunhong Zhang Hong Liu Yu Zhang Lin Han 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期252-313,共62页
Flexible electronics are transforming our lives by making daily activities more convenient.Central to this innovation are field-effect transistors(FETs),valued for their efficient signal processing,nanoscale fabricati... Flexible electronics are transforming our lives by making daily activities more convenient.Central to this innovation are field-effect transistors(FETs),valued for their efficient signal processing,nanoscale fabrication,low-power consumption,fast response times,and versatility.Graphene,known for its exceptional mechanical properties,high electron mobility,and biocompatibility,is an ideal material for FET channels and sensors.The combination of graphene and FETs has given rise to flexible graphene field-effect transistors(FGFETs),driving significant advances in flexible electronics and sparked a strong interest in flexible biomedical sensors.Here,we first provide a brief overview of the basic structure,operating mechanism,and evaluation parameters of FGFETs,and delve into their material selection and patterning techniques.The ability of FGFETs to sense strains and biomolecular charges opens up diverse application possibilities.We specifically analyze the latest strategies for integrating FGFETs into wearable and implantable flexible biomedical sensors,focusing on the key aspects of constructing high-quality flexible biomedical sensors.Finally,we discuss the current challenges and prospects of FGFETs and their applications in biomedical sensors.This review will provide valuable insights and inspiration for ongoing research to improve the quality of FGFETs and broaden their application prospects in flexible biomedical sensing. 展开更多
关键词 FLEXIBLE GRAPHENE Field-effect transistor Wearable IMPLANTABLE BIOSENSOR
在线阅读 下载PDF
An Artificial Intelligence‑Assisted Flexible and Wearable Mechanoluminescent Strain Sensor System
2
作者 Yan Dong Wenzheng An +1 位作者 Zihu Wang Dongzhi Zhang 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期217-231,共15页
The complex wiring,bulky data collection devices,and difficulty in fast and on-site data interpretation significantly limit the practical application of flexible strain sensors as wearable devices.To tackle these chal... The complex wiring,bulky data collection devices,and difficulty in fast and on-site data interpretation significantly limit the practical application of flexible strain sensors as wearable devices.To tackle these challenges,this work develops an artificial intelligenceassisted,wireless,flexible,and wearable mechanoluminescent strain sensor system(AIFWMLS)by integration of deep learning neural network-based color data processing system(CDPS)with a sandwich-structured flexible mechanoluminescent sensor(SFLC)film.The SFLC film shows remarkable and robust mechanoluminescent performance with a simple structure for easy fabrication.The CDPS system can rapidly and accurately extract and interpret the color of the SFLC film to strain values with auto-correction of errors caused by the varying color temperature,which significantly improves the accuracy of the predicted strain.A smart glove mechanoluminescent sensor system demonstrates the great potential of the AIFWMLS system in human gesture recognition.Moreover,the versatile SFLC film can also serve as a encryption device.The integration of deep learning neural network-based artificial intelligence and SFLC film provides a promising strategy to break the“color to strain value”bottleneck that hinders the practical application of flexible colorimetric strain sensors,which could promote the development of wearable and flexible strain sensors from laboratory research to consumer markets. 展开更多
关键词 Mechanoluminescent Strain sensor FLEXIBLE Deep learning WIRELESS
在线阅读 下载PDF
Bioinspired Ultrasensitive Flexible Strain Sensors for Real‑Time Wireless Detection of Liquid Leakage
3
作者 Weilong Zhou Yu Du +6 位作者 Yingying Chen Congyuan Zhang Xiaowei Ning Heng Xie Ting Wu Jinlian Hu Jinping Qu 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期310-327,共18页
Liquid leakage of pipeline networks not only results in considerableresource wastage but also leads to environmental pollution and ecological imbalance.In response to this global issue, a bioinspired superhydrophobic ... Liquid leakage of pipeline networks not only results in considerableresource wastage but also leads to environmental pollution and ecological imbalance.In response to this global issue, a bioinspired superhydrophobic thermoplastic polyurethane/carbon nanotubes/graphene nanosheets flexible strain sensor (TCGS) hasbeen developed using a combination of micro-extrusion compression molding andsurface modification for real-time wireless detection of liquid leakage. The TCGSutilizes the synergistic effects of Archimedean spiral crack arrays and micropores,which are inspired by the remarkable sensory capabilities of scorpions. This designachieves a sensitivity of 218.13 at a strain of 2%, which is an increase of 4300%. Additionally, it demonstrates exceptional durability bywithstanding over 5000 usage cycles. The robust superhydrophobicity of the TCGS significantly enhances sensitivity and stability indetecting small-scale liquid leakage, enabling precise monitoring of liquid leakage across a wide range of sizes, velocities, and compositionswhile issuing prompt alerts. This provides critical early warnings for both industrial pipelines and potential liquid leakage scenariosin everyday life. The development and utilization of bioinspired ultrasensitive flexible strain sensors offer an innovative and effectivesolution for the early wireless detection of liquid leakage. 展开更多
关键词 Thermoplastic polyurethane BIOINSPIRED Cracks Liquid leakage Flexible strain sensor
在线阅读 下载PDF
Flexible Strain Sensors with Ultra‑High Sensitivity and Wide Range Enabled by Crack‑Modulated Electrical Pathways
4
作者 Yunzhao Bai Yunlei Zhou +6 位作者 Xuanyu Wu Mengfei Yin Liting Yin Shiyuan Qu Fan Zhang Kan Li YongAn Huang 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期246-264,共19页
This study presents a breakthrough in flexible strain sensor technology with the development of an ultrahigh sensitivity and wide-range sensor,addressing the critical challenge of reconciling sensitivity with measurem... This study presents a breakthrough in flexible strain sensor technology with the development of an ultrahigh sensitivity and wide-range sensor,addressing the critical challenge of reconciling sensitivity with measurement range.Inspired by the structure of bamboo slips,we introduce a novel approach that utilises liquid metal to modulate the electrical pathways within a cracked platinum fabric electrode.The resulting sensor demonstrates a gauge factor greater than 108 and a strain measurement capability exceeding 100%.The integration of patterned liquid metal enables customisable tuning of the sensor’s response,while the porous fabric structure ensures superior comfort and air permeability for the wearer.Our design not only optimises the sensor’s performance but also enhances the electrical stability that is essential for practical applications.Through systematic investigation,we reveal the intrinsic mechanisms governing the sensor’s response,offering valuable insights for the design of wearable strain sensors.The sensor’s exceptional performance across a spectrum of applications,from micro-strain to large-strain detection,highlights its potential for a wide range of real-world uses,demonstrating a significant advancement in the field of flexible electronics. 展开更多
关键词 Flexible strain sensor FABRIC CRACK Response regulation Epidermal device
在线阅读 下载PDF
Low‑Temperature Fabrication of Stable Black‑Phase CsPbI_(3) Perovskite Flexible Photodetectors Toward Wearable Health Monitoring
5
作者 Yingjie Zhao Yicheng Sun +8 位作者 Chaoxin Pei Xing Yin Xinyi Li Yi Hao Mengru Zhang Meng Yuan Jinglin Zhou Yu Chen Yanlin Song 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期232-245,共14页
Flexible wearable optoelectronic devices fabricated fromorganic–inorganic hybrid perovskites significantly accelerate the developmentof portable energy,biomedicine,and sensing fields,but their poor thermal stabilityh... Flexible wearable optoelectronic devices fabricated fromorganic–inorganic hybrid perovskites significantly accelerate the developmentof portable energy,biomedicine,and sensing fields,but their poor thermal stabilityhinders further applications.Conversely,all-inorganic perovskites possessexcellent thermal stability,but black-phase all-inorganic perovskite filmusually requires high-temperature annealing steps,which increases energy consumptionand is not conducive to the fabrication of flexible wearable devices.In this work,an unprecedented low-temperature fabrication of stable blackphaseCsPbI3perovskite films is demonstrated by the in situ hydrolysis reactionof diphenylphosphinic chloride additive.The released diphenyl phosphateand chloride ions during the hydrolysis reaction significantly lower the phasetransition temperature and effectively passivate the defects in the perovskitefilms,yielding high-performance photodetectors with a responsivity of 42.1 AW−1 and a detectivity of 1.3×10^(14)Jones.Furthermore,high-fidelity imageand photoplethysmography sensors are demonstrated based on the fabricated flexible wearable photodetectors.This work provides a newperspective for the low-temperature fabrication of large-area all-inorganic perovskite flexible optoelectronic devices. 展开更多
关键词 In situ hydrolyzation Low-temperature processing All-inorganic perovskite Flexible photodetectors Health monitoring
在线阅读 下载PDF
Wafer‑Scale Vertical 1D GaN Nanorods/2D MoS_(2)/PEDOT:PSS for Piezophototronic Effect‑Enhanced Self‑Powered Flexible Photodetectors
6
作者 Xin Tang Hongsheng Jiang +3 位作者 Zhengliang Lin Xuan Wang Wenliang Wang Guoqiang Li 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期102-116,共15页
van der Waals(vdW)heterostructures constructed by lowdimensional(0D,1D,and 2D)materials are emerging as one of the most appealing systems in next-generation flexible photodetection.Currently,hand-stacked vdW-type phot... van der Waals(vdW)heterostructures constructed by lowdimensional(0D,1D,and 2D)materials are emerging as one of the most appealing systems in next-generation flexible photodetection.Currently,hand-stacked vdW-type photodetectors are not compatible with large-areaarray fabrication and show unimpressive performance in self-powered mode.Herein,vertical 1D GaN nanorods arrays(NRAs)/2D MoS_(2)/PEDOT:PSS in wafer scale have been proposed for self-powered flexible photodetectors arrays firstly.The as-integrated device without external bias under weak UV illumination exhibits a competitive responsivity of 1.47 A W^(−1)and a high detectivity of 1.2×10^(11)Jones,as well as a fast response speed of 54/71μs,thanks to the strong light absorption of GaN NRAs and the efficient photogenerated carrier separation in type-II heterojunction.Notably,the strain-tunable photodetection performances of device have been demonstrated.Impressively,the device at−0.78%strain and zero bias reveals a significantly enhanced photoresponse with a responsivity of 2.47 A W^(−1),a detectivity of 2.6×10^(11)Jones,and response times of 40/45μs,which are superior to the state-of-the-art self-powered flexible photodetectors.This work presents a valuable avenue to prepare tunable vdWs heterostructures for self-powered flexible photodetection,which performs well in flexible sensors. 展开更多
关键词 Vertical nanorod arrays van der Waals heterostructure Piezophototronic effect Self-powered photodetection Flexible sensors
在线阅读 下载PDF
Ultra‑Transparent and Multifunctional IZVO Mesh Electrodes for Next‑Generation Flexible Optoelectronics
7
作者 Kiran A.Nirmal Tukaram D.Dongale +3 位作者 Atul C.Khot Chenjie Yao Nahyun Kim Tae Geun Kim 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期293-309,共17页
Mechanically durable transparent electrodes are essential for achieving long-term stability in flexible optoelectronic devices.Furthermore,they are crucial for applications in the fields of energy,display,healthcare,a... Mechanically durable transparent electrodes are essential for achieving long-term stability in flexible optoelectronic devices.Furthermore,they are crucial for applications in the fields of energy,display,healthcare,and soft robotics.Conducting meshes represent a promising alternative to traditional,brittle,metal oxide conductors due to their high electrical conductivity,optical transparency,and enhanced mechanical flexibility.In this paper,we present a simple method for fabricating an ultra-transparent conducting metal oxide mesh electrode using selfcracking-assisted templates.Using this method,we produced an electrode with ultra-transparency(97.39%),high conductance(Rs=21.24Ωsq^(−1)),elevated work function(5.16 eV),and good mechanical stability.We also evaluated the effectiveness of the fabricated electrodes by integrating them into organic photovoltaics,organic light-emitting diodes,and flexible transparent memristor devices for neuromorphic computing,resulting in exceptional device performance.In addition,the unique porous structure of the vanadium-doped indium zinc oxide mesh electrodes provided excellent flexibility,rendering them a promising option for application in flexible optoelectronics. 展开更多
关键词 Self-cracking template Vanadium-doped indium zinc oxide mesh Organic solar cells Organic light-emitting diodes Flexible transparent memory
在线阅读 下载PDF
Flexible region aggregation of adjustable loads via an adaptive convex hull strategy
8
作者 Yisha Lin Zongxiang Lu +1 位作者 Ying Qiao Ruijie Chen 《Global Energy Interconnection》 2025年第1期106-120,共15页
Increasing interest has been directed toward the potential of heterogeneous flexible loads to mitigate the challenges associated with the increasing variability and uncertainty of renewable generation.Evaluating the a... Increasing interest has been directed toward the potential of heterogeneous flexible loads to mitigate the challenges associated with the increasing variability and uncertainty of renewable generation.Evaluating the aggregated flexible region of load clusters managed by load aggregators is the crucial basis of power system scheduling for the system operator.This is because the aggregation result affects the qual-ity of the scheduling schemes.A stringent computation based on the Minkowski sum is NP-hard,whereas existing approximation meth-ods that use a special type of polytope exhibit limited adaptability when aggregating heterogeneous loads.This study proposes a stringent internal approximation method based on the convex hull of multiple layers of maximum volume boxes and embeds it into a day-ahead scheduling optimization model.The numerical results indicate that the aggregation accuracy can be improved compared with methods based on one type of special polytope,including boxes,zonotopes,and homothets.Hence,the reliability and economy of the power sys-tem scheduling can be enhanced. 展开更多
关键词 AGGREGATION Flexible region Heterogeneous load Power system scheduling
在线阅读 下载PDF
An Efficient and Flexible Bifunctional Dual-Band Electrochromic Device Integrating with Energy Storage
9
作者 Zekun Huang Yutao Peng +7 位作者 Jing Zhao Shengliang Zhang Penglu Qi Xianlin Qu Fuqiang Yan Bing Ding Yimin Xuan Xiaogang Zhang 《Nano-Micro Letters》 2025年第4期419-434,共16页
Dual-band electrochromic devices capable of the spectral-selective modulation of visible(VIS)light and near-infrared(NIR)can notably reduce the energy consumption of buildings and improve the occupants’visual and the... Dual-band electrochromic devices capable of the spectral-selective modulation of visible(VIS)light and near-infrared(NIR)can notably reduce the energy consumption of buildings and improve the occupants’visual and thermal comfort.However,the low optical modulation and poor durability of these devices severely limit its practical applications.Herein,we demonstrate an efficient and flexible bifunctional dual-band electrochromic device which not only shows excellent spectral-selective electrochromic performance with a high optical modulation and a long cycle life,but also displays a high capacitance and a high energy recycling efficiency of 51.4%,integrating energy-saving with energy-storage.The nanowires structure and abundant oxygen-vacancies of oxygen-deficient tungsten oxide nanowires endows it high flexibility and a high optical modulation of 73.1%and 85.3%at 633 and 1200 nm respectively.The prototype device assembled can modulate the VIS light and NIR independently and effectively through three distinct modes with a long cycle life(3.3%capacity loss after 10,000 cycles)and a high energy-saving performance(8.8℃lower than the common glass).Furthermore,simulations also demonstrate that our device outperforms the commercial low-emissivity glass in terms of energy-saving in most climatic zones around the world.Such windows represent an intriguing potential technology to improve the building energy efficiency. 展开更多
关键词 Electrochromic Dual-band electrochromic devices Spectral-selective modulation FLEXIBLE Energy storage
在线阅读 下载PDF
Wearable Biodevices Based on Two-Dimensional Materials:From Flexible Sensors to Smart Integrated Systems
10
作者 Yingzhi Sun Weiyi He +3 位作者 Can Jiang Jing Li Jianli Liu Mingjie Liu 《Nano-Micro Letters》 2025年第5期207-255,共49页
The proliferation of wearable biodevices has boosted the development of soft,innovative,and multifunctional materials for human health monitoring.The integration of wearable sensors with intelligent systems is an over... The proliferation of wearable biodevices has boosted the development of soft,innovative,and multifunctional materials for human health monitoring.The integration of wearable sensors with intelligent systems is an overwhelming tendency,providing powerful tools for remote health monitoring and personal health management.Among many candidates,two-dimensional(2D)materials stand out due to several exotic mechanical,electrical,optical,and chemical properties that can be efficiently integrated into atomic-thin films.While previous reviews on 2D materials for biodevices primarily focus on conventional configurations and materials like graphene,the rapid development of new 2D materials with exotic properties has opened up novel applications,particularly in smart interaction and integrated functionalities.This review aims to consolidate recent progress,highlight the unique advantages of 2D materials,and guide future research by discussing existing challenges and opportunities in applying 2D materials for smart wearable biodevices.We begin with an in-depth analysis of the advantages,sensing mechanisms,and potential applications of 2D materials in wearable biodevice fabrication.Following this,we systematically discuss state-of-the-art biodevices based on 2D materials for monitoring various physiological signals within the human body.Special attention is given to showcasing the integration of multi-functionality in 2D smart devices,mainly including self-power supply,integrated diagnosis/treatment,and human–machine interaction.Finally,the review concludes with a concise summary of existing challenges and prospective solutions concerning the utilization of2D materials for advanced biodevices. 展开更多
关键词 Two-dimensional material Wearable biodevice Flexible sensor Smart integrated system Healthcare
在线阅读 下载PDF
Transformation of discarded biomass into value-added flexible electronic materials
11
作者 Sijia Bao Xuenan Yang +2 位作者 Ziqi Yu Yuanbo Shi Yuan Lu 《Green Energy & Environment》 2025年第3期452-470,共19页
The development of electronic products and increased electronic waste have triggered a series of ecological problems on Earth.Meanwhile,amidst energy crises and the pursuit of carbon neutrality,the recycling of discar... The development of electronic products and increased electronic waste have triggered a series of ecological problems on Earth.Meanwhile,amidst energy crises and the pursuit of carbon neutrality,the recycling of discarded biomass has attracted the attention of many researchers.In recent years,the transformation of discarded biomass into value-added electronic products has emerged as a promising endeavor in the field of green and flexible electronics.In this review,the attempts and advancements in biomass conversion into flexible electronic materials and devices are systematically summarized.We focus on reviewing the research progress in biomass conversion into substrates,electrodes,and materials tailored for optical and thermal management.Furthermore,we explore component combinations suitable for applications in environmental monitoring and health management.Finally,we discuss the challenges in techniques and cost-effectiveness currently faced by biomass conversion into flexible electronic devices and propose improvement strategies.Drawing insights from both fundamental research and industrial applications,we offer prospects for future developments in this burgeoning field. 展开更多
关键词 Biomass conversion Flexible electronics Green process Sustainable development
在线阅读 下载PDF
High-temperature-tolerant flexible supercapacitors: Gel polymer electrolytes and electrode materials
12
作者 Chong Peng Xinyi Huang +4 位作者 Mingwei Zhao Shuling Liao Quanhong Yang Nianjun Yang Siyu Yu 《Journal of Energy Chemistry》 2025年第1期426-457,共32页
The development of flexible supercapacitors(FSCs) capable of operating at high temperatures is crucial for expanding the application areas and operating conditions of supercapacitors. Gel polymer electrolytes and elec... The development of flexible supercapacitors(FSCs) capable of operating at high temperatures is crucial for expanding the application areas and operating conditions of supercapacitors. Gel polymer electrolytes and electrode materials stand as two key components that significantly impact the efficacy of hightemperature-tolerant FSCs(HT-FSCs). They should not only exhibit high electrochemical performance and excellent flexibility, but also withstand intense thermal stress. Considerable efforts have been devoted to enhancing their thermal stability while maintaining high electrochemical and mechanical performance. In this review, the fundamentals of HT-FSCs are outlined. A comprehensive overview of state-of-the-art progress and achievements in HT-FSCs, with a focus on thermally stable gel polymer electrolytes and electrode materials is provided. Finally, challenges and future perspectives regarding HT-FSCs are discussed, alongside strategies for elevating operational temperatures and performance.This review offers both theoretical foundations and practical guidelines for designing and manufacturing HT-FSCs, further promoting their widespread adoption across diverse fields. 展开更多
关键词 Flexible supercapacitors High-temperature tolerance Gel polymer electrolytes Electrode materials
在线阅读 下载PDF
Research on the protection mechanism of methane explosion in underground space by flexible construction
13
作者 Xianqi Duan Yulong Duan +3 位作者 Zishuang Zhang Jun Long Yaqiao Yang Rui Lang 《Defence Technology(防务技术)》 2025年第4期169-183,共15页
Urban growth has promoted the use of underground spaces,where explosion accidents can be catastrophic.In this study,we investigated the effect of placing flexible construction in front of rigid obstacles on methane ex... Urban growth has promoted the use of underground spaces,where explosion accidents can be catastrophic.In this study,we investigated the effect of placing flexible construction in front of rigid obstacles on methane explosion protection by using an experimental platform and adjusting the blockage rate and spacing of the obstacles.It aims to reduce the risk of gas explosions in urban underground spaces.The results of the study show that the flame propagation peak speed and peak overpressure are reduced with the decrease in the blocking rate of the flexible obstacle when the blocking rate of the flexible obstacle is less than or equal to the blocking rate of the rigid obstacle,with the decrease in the spacing,the better the protection effect of the methane explosion.When the blockage rate of the flexible obstacle is greater than the blockage rate of the rigid obstacle and spacing is less than the height of the flexible obstacle,rigid and flexible obstacles are connected as a whole,increasing the strength of the explosion.This study can provide a theoretical basis and scientific guidance for optimizing rigid and flexible object hybrid layouts and methane explosion protection technology in urban underground spaces. 展开更多
关键词 Explosion protection Flexible construction Urban underground space Methane explosions
在线阅读 下载PDF
Synergistic strain engineering of the perovskite films for improving flexible inverted perovskite solar cells under convex bending
14
作者 Yong Gang Lu Xu +5 位作者 Silong Tu Shusen Jiang Yan Zhang Hao Wang Cheng Li Xin Li 《Journal of Energy Chemistry》 2025年第3期271-281,共11页
Flexible perovskite solar cells(fPSCs)have demonstrated commercial viability because of their promising lightness,flexibility,and low-cost advantages.However,in most applications,the fPSCs suffer from constant externa... Flexible perovskite solar cells(fPSCs)have demonstrated commercial viability because of their promising lightness,flexibility,and low-cost advantages.However,in most applications,the fPSCs suffer from constant external stress,such as being kept at a convex bending state,imposing external stress on the brittle perovskite films and causing the fPSCs long-term stability problems.Overcoming these issues is vital.Herein,we propose an effective way to enhance the stability of the fPSCs under convex bending by modulating the residual stress of perovskite film for the first time.Specifically,we have carefully designed a synergistic strain engineering to toughen the perovskite films by introducing 1-butyl-3-methylimidazolium tetrafluoroborate,citric acid,and a novel cross-linker,5-(1,2-dithiolan-3-yl)pentanoate into perovskite films simultaneously.Besides passivating the perovskite films,the multiple additives effectively convert the residual stress within the perovskite films from tensile to compressive type to alleviate the detrimental impact of bending on the flexible perovskite films.As a result,the optimal efficiencies of triple-additive modified fPSCs have achieved 22.19%(0.06 cm^(2))and 19.44%(1.02 cm^(2)).More importantly,the strategy could significantly improve the stability of the perovskite films and fPSCs at a convex bending state.Our approach is inductive for the future practical field applications of high-performance fPSCs. 展开更多
关键词 Inverted flexible perovskite solar cells Synergistic strain engineering Stability
在线阅读 下载PDF
Review on Multi-objective Dynamic Scheduling Methods for Flexible Job Shops and Application in Aviation Manufacturing
15
作者 MA Yajie JIANG Bin +3 位作者 GUAN Li CHEN Lijun HUANG Binda CHEN Zhi 《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第1期1-24,共24页
Intelligent production is an important development direction in intelligent manufacturing,with intelligent factories playing a crucial role in promoting intelligent production.Flexible job shops,as the main form of in... Intelligent production is an important development direction in intelligent manufacturing,with intelligent factories playing a crucial role in promoting intelligent production.Flexible job shops,as the main form of intelligent factories,constantly face dynamic disturbances during the production process,including machine failures and urgent orders.This paper discusses the basic models and research methods of job shop scheduling,emphasizing the important role of dynamic job shop scheduling and its response schemes in future research.A multi-objective flexible job shop dynamic scheduling mathematical model is established,highlighting its complex and multi-constraint characteristics under different interferences.A classification discussion is conducted on the dynamic response methods and optimization objectives under machine failures,emergency orders,fuzzy completion times,and mixed dynamic events.The development process of traditional scheduling rules and intelligent methods in dynamic scheduling are also analyzed.Finally,based on the current development status of job shop scheduling and the requirements of intelligent manufacturing,the future development trends of dynamic scheduling in flexible job shops are proposed. 展开更多
关键词 flexible job shop dynamic scheduling machine breakdown job insertion multi-objective optimization
在线阅读 下载PDF
Thickness-dependent magnetic property of FeNi thin film grown on flexible graphene substrate
16
作者 Suixin Zhan Shaokang Yuan +6 位作者 Yuming Bai Fu Liu Bohan Zhang Weijia Han Tao Wang Shengxiang Wang Cai Zhou 《Chinese Physics B》 2025年第2期448-452,共5页
Electronics over flexible substrates offer advantages of flexibility, portability and low cost, and promising applications in the areas of energy, information, defense science and medical service. In recent years, tre... Electronics over flexible substrates offer advantages of flexibility, portability and low cost, and promising applications in the areas of energy, information, defense science and medical service. In recent years, tremendous progress has been witnessed in the development of flexible wearable devices that can be potentially massively deployed. Of particular interest are intelligent wearable devices, such as sensors and storage cells, which can be integrated by flexible magnetoelectronic devices based on magnetic thin films. To examine this further, the magnetic properties of FeNi thin films with different thicknesses grown on flexible graphene substrate are investigated at room temperature. The coercivity increases with increasing thicknesses of FeNi thin film, which can be attributed to the increase of grain size and decrease of surface roughness. Moreover, the thickness modulated magnetic property shows a magnetic anisotropy shift increase with varying thicknesses of FeNi thin film by using measurements based on ferromagnetic resonance, which further enhances the resonance frequency. In addition, the resonance peak is quite stable after bending it for ten cycles. The result is promising for the future design of flexible magnetoelectronic devices. 展开更多
关键词 resonance frequency FeNi thin film flexible graphene substrate magnetic property
在线阅读 下载PDF
Efficient flexible perovskite solar cells:From materials to buried structure revealed by synchrotron radiation GIWAXS
17
作者 Xiaoxi Li Tingting Wang +7 位作者 Lifeng Yang Bitao Dong Yuchun Li Laixi Li Lina Li Shanglei Feng Gengsheng Chen Yingguo Yang 《Journal of Energy Chemistry》 2025年第5期254-267,共14页
Perovskite solar cells(PSC)are considered as a promising photovoltaic technology due to their low cost and high efficiency exceeding 26.8%.Ultra-lightweight flexible perovskite solar cells(FPSCs)can be applied to many... Perovskite solar cells(PSC)are considered as a promising photovoltaic technology due to their low cost and high efficiency exceeding 26.8%.Ultra-lightweight flexible perovskite solar cells(FPSCs)can be applied to many fields such as architecture and portable devices.Although the photovoltaic conversion efficiency(PCE)of FPSC has exceeded 24%in the past few years,further application of FPSC is constrained by the challenges posed by limitation of critical material components.Here,we discussed recent research progress of key FPSC materials,mechanical endurance,low-temperature fabrication,etc.With the advantages of high brightness,collimation and resolution,we specially introduced the application of synchrotron radiation grazing incidence wide-angle X-ray scattering(GIWAXS)to directly observe the perovskite buried interface structure and corresponding mechanical stability of FPSCs without any damage.Finally,we summarize the challenges and propose an outlook about the large-scale preparation of efficient and stable FPSC modules. 展开更多
关键词 Flexible perovskite solar cells Device materials Buried structure Synchrotron radiation GIWAXS
在线阅读 下载PDF
A Flexible Smart Healthcare Platform Conjugated with Artificial Epidermis Assembled by Three‑Dimensionally Conductive MOF Network for Gas and Pressure Sensing
18
作者 Qingqing Zhou Qihang Ding +8 位作者 Zixun Geng Chencheng Hu Long Yang Zitong Kan Biao Dong Miae Won Hongwei Song Lin Xu Jong Seung Kim 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期601-620,共20页
The rising flexible and intelligent electronics greatly facilitate the noninvasive and timely tracking of physiological information in telemedicine healthcare.Meticulously building bionic-sensitive moieties is vital f... The rising flexible and intelligent electronics greatly facilitate the noninvasive and timely tracking of physiological information in telemedicine healthcare.Meticulously building bionic-sensitive moieties is vital for designing efficient electronic skin with advanced cognitive functionalities to pluralistically capture external stimuli.However,realistic mimesis,both in the skin’s three-dimensional interlocked hierarchical structures and synchronous encoding multistimuli information capacities,remains a challenging yet vital need for simplifying the design of flexible logic circuits.Herein,we construct an artificial epidermal device by in situ growing Cu_(3)(HHTP)_(2) particles onto the hollow spherical Ti_(3)C_(2)T_(x) surface,aiming to concurrently emulate the spinous and granular layers of the skin’s epidermis.The bionic Ti_(3)C_(2)T_(x)@Cu_(3)(HHTP)_(2) exhibits independent NO_(2) and pressure response,as well as novel functionalities such as acoustic signature perception and Morse code-encrypted message communication.Ultimately,a wearable alarming system with a mobile application terminal is self-developed by integrating the bimodular senor into flexible printed circuits.This system can assess risk factors related with asthmatic,such as stimulation of external NO_(2) gas,abnormal expiratory behavior and exertion degrees of fingers,achieving a recognition accuracy of 97.6%as assisted by a machine learning algorithm.Our work provides a feasible routine to develop intelligent multifunctional healthcare equipment for burgeoning transformative telemedicine diagnosis. 展开更多
关键词 Ti_(3)C_(2)T_(x)@Cu_(3)(HHTP)_(2)composites NO_(2)/pressure flexible sensors Health-monitoring Machine learning
在线阅读 下载PDF
Flexible molecules dedicate to release strain of inverted inorganic perovskite solar cell
19
作者 Hongrui Sun Sanlong Wang +5 位作者 Pengyang Wang Yali Liu Shanshan Qi Biao Shi Ying Zhao Xiaodan Zhang 《Journal of Energy Chemistry》 2025年第1期87-93,共7页
The tensile strain in inorganic perovskite films induced by thermal annealing is one of the primary factors contributing to the inefficiency and instability of inorganic perovskite solar cells(IPSCs),which reduces the... The tensile strain in inorganic perovskite films induced by thermal annealing is one of the primary factors contributing to the inefficiency and instability of inorganic perovskite solar cells(IPSCs),which reduces the defect formation energy.Here,a flexible molecule 5-maleimidovaleric acid(5-MVA)was introduced as a strain buffer to release the residual strain of CsPbI_(2.85)Br_(0.15)perovskite.Maleic anhydride and carboxyl groups in 5-MVA interact strongly with the uncoordinated Pb^(2+)through Lewis acid-base reaction,thus tightly“pull”the perovskite lattice.The in-between soft carbon chain increased the structural flexibility of CsPbI_(2.85)Br_(0.15)perovskite materials,which effectively relieved the intrinsic internal strain of CsPbI_(2.85)Br_(0.15),resisted the corrosion of external strain,and also reduced the formation of defects such as VIand Pb0.In addition,the introduction of 5-MVA improved crystal quality,passivated residual defects,and narrowed energy level barriers.Eventually,power conversion efficiency(PCE)of NiOxbased inverted IPSCs increased from 19.25%to 20.82%with the open-circuit voltage enhanced from 1.164 V to 1.230 V.The release of strain also improved the stability of CsPbI_(2.85)Br_(0.15)perovskite films and devices. 展开更多
关键词 Inverted inorganic perovskite solar cells Flexible molecules Strain release Crystallization Energy barrier High PCE
在线阅读 下载PDF
Enhancing Thermal Protection in Lithium Batteries with Power Bank‑Inspired Multi‑Network Aerogel and Thermally Induced Flexible Composite Phase Change Material
20
作者 Zaichao Li Feng Cao +2 位作者 Yuang Zhang Shufen Zhang Bingtao Tang 《Nano-Micro Letters》 2025年第7期285-304,共20页
Thermal runaway(TR)is considered a significant safety hazard for lithium batteries,and thermal protection materials are crucial in mitigating this risk.However,current thermal protection materials generally suffer fro... Thermal runaway(TR)is considered a significant safety hazard for lithium batteries,and thermal protection materials are crucial in mitigating this risk.However,current thermal protection materials generally suffer from poor mechanical properties,flammability,leakage,and rigid crystallization,and they struggle to continuously block excess heat transfer and propagation once thermal saturation occurs.This study proposes a novel type of thermal protection material:an aerogel coupled composite phase change material(CPCM).The composite material consists of gelatin/sodium alginate(Ge/SA)composite biomass aerogel as an insulating component and a thermally induced flexible CPCM made from thermoplastic polyester elastomer as a heat-absorbing component.Inspired by power bank,we coupled the aerogel with CPCM through the binder,so that CPCM can continue to‘charge and store energy’for the aerogel,effectively absorbing heat,delaying the heat saturation phenomenon,and maximizing the duration of thermal insulation.The results demonstrate that the Ge/SA aerogel exhibits excellent thermal insulation(with a temperature difference of approximately 120℃ across a 1 cm thickness)and flame retardancy(achieving a V-0 flame retardant rating).The CPCM exhibits high heat storage density(811.9 J g^(−1)),good thermally induced flexibility(bendable above 40℃),and thermal stability.Furthermore,the Ge/SA-CPCM coupled composite material shows even more outstanding thermal insulation performance,with the top surface temperature remaining at 89℃ after 100 min of exposure to a high temperature of 230℃.This study provides a new direction for the development of TR protection materials for lithium batteries. 展开更多
关键词 Lithium-ion battery thermal runaway Thermal protection material Multinetwork aerogel Flexible composite phase change material
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部