期刊文献+
共找到1,171篇文章
< 1 2 59 >
每页显示 20 50 100
Small-time scale network traffic prediction based on a local support vector machine regression model 被引量:10
1
作者 孟庆芳 陈月辉 彭玉华 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第6期2194-2199,共6页
In this paper we apply the nonlinear time series analysis method to small-time scale traffic measurement data. The prediction-based method is used to determine the embedding dimension of the traffic data. Based on the... In this paper we apply the nonlinear time series analysis method to small-time scale traffic measurement data. The prediction-based method is used to determine the embedding dimension of the traffic data. Based on the reconstructed phase space, the local support vector machine prediction method is used to predict the traffic measurement data, and the BIC-based neighbouring point selection method is used to choose the number of the nearest neighbouring points for the local support vector machine regression model. The experimental results show that the local support vector machine prediction method whose neighbouring points are optimized can effectively predict the small-time scale traffic measurement data and can reproduce the statistical features of real traffic measurements. 展开更多
关键词 network traffic small-time scale nonlinear time series analysis support vector machine regression model
在线阅读 下载PDF
Improvement of the prediction performance of a soft sensor model based on support vector regression for production of ultra-low sulfur diesel 被引量:2
2
作者 Saeid Shokri Mohammad Taghi Sadeghi +1 位作者 Mahdi Ahmadi Marvast Shankar Narasimhan 《Petroleum Science》 SCIE CAS CSCD 2015年第1期177-188,共12页
A novel data-driven, soft sensor based on support vector regression (SVR) integrated with a data compression technique was developed to predict the product quality for the hydrodesulfurization (HDS) process. A wid... A novel data-driven, soft sensor based on support vector regression (SVR) integrated with a data compression technique was developed to predict the product quality for the hydrodesulfurization (HDS) process. A wide range of experimental data was taken from a HDS setup to train and test the SVR model. Hyper-parameter tuning is one of the main challenges to improve predictive accuracy of the SVR model. Therefore, a hybrid approach using a combination of genetic algorithm (GA) and sequential quadratic programming (SQP) methods (GA-SQP) was developed. Performance of different optimization algorithms including GA-SQP, GA, pattern search (PS), and grid search (GS) indicated that the best average absolute relative error (AARE), squared correlation coefficient (R2), and computation time (CT) (AARE = 0.0745, R2 = 0.997 and CT = 56 s) was accomplished by the hybrid algorithm. Moreover, to reduce the CT and improve the accuracy of the SVR model, the vector quantization (VQ) technique was used. The results also showed that the VQ technique can decrease the training time and improve prediction performance of the SVR model. The proposed method can provide a robust, soft sensor in a wide range of sulfur contents with good accuracy. 展开更多
关键词 Soft sensor Support vector regression Hybrid optimization method vector quantization Petroleum refinery Hydrodesulfurization process Gas oil
在线阅读 下载PDF
Support vector regression modeling in recursive just-in-time learning framework for adaptive soft sensing of naphtha boiling point in crude distillation unit 被引量:4
3
作者 Venkata Vijayan S Hare Krishna Mohanta Ajaya Kumar Pani 《Petroleum Science》 SCIE CAS CSCD 2021年第4期1230-1239,共10页
Prediction of primary quality variables in real time with adaptation capability for varying process conditions is a critical task in process industries.This article focuses on the development of non-linear adaptive so... Prediction of primary quality variables in real time with adaptation capability for varying process conditions is a critical task in process industries.This article focuses on the development of non-linear adaptive soft sensors for prediction of naphtha initial boiling point(IBP)and end boiling point(EBP)in crude distillation unit.In this work,adaptive inferential sensors with linear and non-linear local models are reported based on recursive just in time learning(JITL)approach.The different types of local models designed are locally weighted regression(LWR),multiple linear regression(MLR),partial least squares regression(PLS)and support vector regression(SVR).In addition to model development,the effect of relevant dataset size on model prediction accuracy and model computation time is also investigated.Results show that the JITL model based on support vector regression with iterative single data algorithm optimization(ISDA)local model(JITL-SVR:ISDA)yielded best prediction accuracy in reasonable computation time. 展开更多
关键词 Adaptive soft sensor Just in time learning regression Support vector regression Naphtha boiling point
在线阅读 下载PDF
Fault diagnosis of power-shift steering transmission based on multiple outputs least squares support vector regression 被引量:2
4
作者 张英锋 马彪 +2 位作者 房京 张海岭 范昱珩 《Journal of Beijing Institute of Technology》 EI CAS 2011年第2期199-204,共6页
A method of multiple outputs least squares support vector regression (LS-SVR) was developed and described in detail, with the radial basis function (RBF) as the kernel function. The method was applied to predict t... A method of multiple outputs least squares support vector regression (LS-SVR) was developed and described in detail, with the radial basis function (RBF) as the kernel function. The method was applied to predict the future state of the power-shift steering transmission (PSST). A prediction model of PSST was gotten with multiple outputs LS-SVR. The model performance was greatly influenced by the penalty parameter γ and kernel parameter σ2 which were optimized using cross validation method. The training and prediction of the model were done with spectrometric oil analysis data. The predictive and actual values were compared and a fault in the second PSST was found. The research proved that this method had good accuracy in PSST fault prediction, and any possible problem in PSST could be found through a comparative analysis. 展开更多
关键词 least squares support vector regression(LS-SVR) fault diagnosis power-shift steering transmission (PSST)
在线阅读 下载PDF
Prediction of protein binding sites using physical and chemical descriptors and the support vector machine regression method 被引量:1
5
作者 孙重华 江凡 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第11期1-6,共6页
In this paper a new continuous variable called core-ratio is defined to describe the probability for a residue to be in a binding site, thereby replacing the previous binary description of the interface residue using ... In this paper a new continuous variable called core-ratio is defined to describe the probability for a residue to be in a binding site, thereby replacing the previous binary description of the interface residue using 0 and 1. So we can use the support vector machine regression method to fit the core-ratio value and predict the protein binding sites. We also design a new group of physical and chemical descriptors to characterize the binding sites. The new descriptors are more effective, with an averaging procedure used. Our test shows that much better prediction results can be obtained by the support vector regression (SVR) method than by the support vector classification method. 展开更多
关键词 protein binding site support vector machine regression cross-validation neighbour residue
在线阅读 下载PDF
Prediction of Henry Constants and Adsorption Mechanism of Volatile Organic Compounds on Multi-Walled Carbon Nanotubes by Using Support Vector Regression 被引量:1
6
作者 程文德 蔡从中 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第4期143-146,共4页
Support vector regression (SVR) combined with particle swarm optimization for its parameter optimization is employed to establish a model for predicting the Henry constants of multi-walled carbon nanotubes (MWNTs)... Support vector regression (SVR) combined with particle swarm optimization for its parameter optimization is employed to establish a model for predicting the Henry constants of multi-walled carbon nanotubes (MWNTs) for adsorption of volatile organic compounds (VOCs). The prediction performance of SVR is compared with those of the model of theoretical linear salvation energy relationship (TLSER). By using leave-one-out cross validation of SVR test Henry constants for adsorption of 35 VOCs on MWNTs, the root mean square error is 0.080, the mean absolute percentage error is only 1.19~, and the correlation coefficient (R2) is as high as 0.997. Compared with the results of the TLSER model, it is shown that the estimated errors by SVR are ali smaller than those achieved by TLSER. It reveals that the generalization ability of SVR is superior to that of the TLSER model Meanwhile, multifactor analysis is adopted for investigation of the influences of each molecular structure descriptor on the Henry constants. According to the TLSER model, the adsorption mechanism of adsorption of carbon nanotubes of VOCs is mainly a result of van der Waals and interactions of hydrogen bonds. These can provide the theoretical support for the application of carbon nanotube adsorption of VOCs and can make up for the lack of experimental data. 展开更多
关键词 of is in SVR Prediction of Henry Constants and Adsorption Mechanism of Volatile Organic Compounds on Multi-Walled Carbon Nanotubes by Using Support vector regression VOCs MWNTS by on
在线阅读 下载PDF
High-rise building fire pre-warning model based on the support vector regression 被引量:1
7
作者 张立宁 张奇 安晶 《Journal of Beijing Institute of Technology》 EI CAS 2015年第3期285-290,共6页
Aiming at reducing the deficiency of the traditional fire pre-warning algorithms and the intelligent fire pre-warning algorithms such as artificial neural network,and then to improve the accuracy of fire prewarning fo... Aiming at reducing the deficiency of the traditional fire pre-warning algorithms and the intelligent fire pre-warning algorithms such as artificial neural network,and then to improve the accuracy of fire prewarning for high-rise buildings,a composite fire pre-warning controller is designed according to the characteristic( nonlinear,less historical data,many influence factors),also a high-rise building fire pre-warning model is set up based on the support vector regression( SV R). Then the wood fire standard history data is applied to make empirical analysis. The research results can provide a reliable decision support framework for high-rise building fire pre-warning. 展开更多
关键词 high-rise buildings fire composite fire pre-warning systemdesign the support vector regression pre-warning model
在线阅读 下载PDF
Improved Scheme for Fast Approximation to Least Squares Support Vector Regression
8
作者 张宇宸 赵永平 +3 位作者 宋成俊 侯宽新 脱金奎 叶小军 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2014年第4期413-419,共7页
The solution of normal least squares support vector regression(LSSVR)is lack of sparseness,which limits the real-time and hampers the wide applications to a certain degree.To overcome this obstacle,a scheme,named I2FS... The solution of normal least squares support vector regression(LSSVR)is lack of sparseness,which limits the real-time and hampers the wide applications to a certain degree.To overcome this obstacle,a scheme,named I2FSA-LSSVR,is proposed.Compared with the previously approximate algorithms,it not only adopts the partial reduction strategy but considers the influence between the previously selected support vectors and the willselected support vector during the process of computing the supporting weights.As a result,I2FSA-LSSVR reduces the number of support vectors and enhances the real-time.To confirm the feasibility and effectiveness of the proposed algorithm,experiments on benchmark data sets are conducted,whose results support the presented I2FSA-LSSVR. 展开更多
关键词 support vector regression kernel method least squares SPARSENESS
在线阅读 下载PDF
Fusion of multi-spectral image and panchromatic image based on support vector regression
9
作者 胡根生 梁栋 《Journal of Beijing Institute of Technology》 EI CAS 2012年第2期269-277,共9页
In our study, support vector value contourlet transform is constructed by using support vector regression model and directional filter banks. The transform is then used to decompose source images at multi-scale, multi... In our study, support vector value contourlet transform is constructed by using support vector regression model and directional filter banks. The transform is then used to decompose source images at multi-scale, multi-direction and multi-resolution. After that, the super-resolved multi-spectral image is reconstructed by utilizing the strong learning ability of support vector regression and the correlation between multi-spectral image and panchromatic image. Finally, the super-resolved multi- spectral image and the panchromatic image are fused based on regions at different levels. Our experi- ments show that, the learning method based on support vector regression can improve the effect of super-resolution of multi-spectral image. The fused image preserves both high space resolution and spectrum information of multi-spectral image. 展开更多
关键词 image processing image fusion support vector regression SUPER-RESOLUTION
在线阅读 下载PDF
Research on Uniform Array Beamforming Based on Support Vector Regression
10
作者 林关成 李亚安 金贝利 《Journal of Marine Science and Application》 2010年第4期439-444,共6页
An approach was proposed for optimizing beamforming that was based on Support Vector Regression (SVR). After studying the mathematical principal of the SVR algorithm and its primal cost function, the modified cost fun... An approach was proposed for optimizing beamforming that was based on Support Vector Regression (SVR). After studying the mathematical principal of the SVR algorithm and its primal cost function, the modified cost function was first applied to uniform array beamforming, and then the corresponding parameters of the beamforming were optimized. The framework of SVR uniform array beamforming was then established. Simulation results show that SVR beamforming can not only approximate the performance of conventional beamforming in the area without noise and with small data sets, but also improve the generalization ability and reduce the computation burden. Also, the side lobe level of both linear and circular arrays by the SVR algorithm is improved sharply through comparison with the conventional one. SVR beamforming is superior to the conventional method in both linear and circular arrays, under single source or double non-coherent sources. 展开更多
关键词 array beamforming support vector regression OPTIMIZATION FRAMEWORK cost function
在线阅读 下载PDF
CONSERVATIVE ESTIMATING FUNCTION IN THE NONLINEAR REGRESSION MODEL WITH AGGREGATED DATA 被引量:1
11
作者 林路 《Acta Mathematica Scientia》 SCIE CSCD 2000年第3期335-340,共6页
The purpose of this paper is to study the theory of conservative estimating functions in nonlinear regression model with aggregated data. In this model, a quasi-score function with aggregated data is defined. When thi... The purpose of this paper is to study the theory of conservative estimating functions in nonlinear regression model with aggregated data. In this model, a quasi-score function with aggregated data is defined. When this function happens to be conservative, it is projection of the true score function onto a class of estimation functions. By constructing, the potential function for the projected score with aggregated data is obtained, which have some properties of log-likelihood function. 展开更多
关键词 nonlinear regression model with aggregated data quasi-score function conservative vector field potential function
在线阅读 下载PDF
Improved Twin Support Vector Machine Algorithm and Applications in Classification Problems
12
作者 Sun Yi Wang Zhouyang 《China Communications》 SCIE CSCD 2024年第5期261-279,共19页
The distribution of data has a significant impact on the results of classification.When the distribution of one class is insignificant compared to the distribution of another class,data imbalance occurs.This will resu... The distribution of data has a significant impact on the results of classification.When the distribution of one class is insignificant compared to the distribution of another class,data imbalance occurs.This will result in rising outlier values and noise.Therefore,the speed and performance of classification could be greatly affected.Given the above problems,this paper starts with the motivation and mathematical representing of classification,puts forward a new classification method based on the relationship between different classification formulations.Combined with the vector characteristics of the actual problem and the choice of matrix characteristics,we firstly analyze the orderly regression to introduce slack variables to solve the constraint problem of the lone point.Then we introduce the fuzzy factors to solve the problem of the gap between the isolated points on the basis of the support vector machine.We introduce the cost control to solve the problem of sample skew.Finally,based on the bi-boundary support vector machine,a twostep weight setting twin classifier is constructed.This can help to identify multitasks with feature-selected patterns without the need for additional optimizers,which solves the problem of large-scale classification that can’t deal effectively with the very low category distribution gap. 展开更多
关键词 FUZZY ordered regression(OR) relaxing variables twin support vector machine
在线阅读 下载PDF
基于PSO−SVR的掘进工作面风温预测
13
作者 李延河 万志军 +6 位作者 于振子 苟红 赵万里 周嘉乐 师鹏 甄正 张源 《煤炭科学技术》 北大核心 2025年第1期183-191,共9页
随着我国浅部煤炭资源的逐渐枯竭,矿井开采深度日益增大,热害问题也随之加剧。采掘作业空间是井下的主要热害场所,对其进行热害防治是矿井安全高效生产的重要基础。矿井热害治理的前提是明确其冷负荷,因此对采掘作业空间风温进行精准预... 随着我国浅部煤炭资源的逐渐枯竭,矿井开采深度日益增大,热害问题也随之加剧。采掘作业空间是井下的主要热害场所,对其进行热害防治是矿井安全高效生产的重要基础。矿井热害治理的前提是明确其冷负荷,因此对采掘作业空间风温进行精准预测意义重大。建立了基于PSO-SVR(基于粒子群的支持向量回归)的掘进工作面风温预测模型,利用模型中的惩罚因子C和核函数参数g对模型进行了寻优。通过现场实测及文献调研,建立了掘进工作面风温预测训练样本集。通过与最小二乘法估计MLR模型和经“试错法”标定参数的常规SVR模型进行对比,分析了PSO-SVR算法的优势。将PSO-SVR算法模型应用于平煤十矿己-24120保护层风巷风温预测,并依据风温预测结果,指导了制冷机组的选型和降温方案设计。结果表明:PSO-SVR模型预测性能最优,模型绝对误差百分比仅为1.85%,较常规SVR模型减小了55.9%,可见PSO优化模型参数对于提高SVR拟合度、泛化性及预测精度具有重要作用。巷道每掘进100m,工作面风流平均温升0.16℃,掘进至2000m时巷道迎头风温升至35.8℃。己-24120保护层风巷需冷量为1083.28kW,设计制冷机组总制冷量为1085 kW。己-24120保护层风巷实施降温后,工作面平均温降8.6℃,降温效果显著,表明了PSO-SVR掘进工作面风温预测模型的可靠性和可行性。 展开更多
关键词 掘进工作面 风温预测 粒子群 支持向量回归 矿井降温
在线阅读 下载PDF
基于机器学习的30%TBP/煤油-硝酸体系中主要组分的分配比预测研究
14
作者 于婷 张音音 +6 位作者 张睿志 金文蕾 罗应婷 朱升峰 何辉 叶国安 龚禾林 《原子能科学技术》 北大核心 2025年第1期14-23,共10页
为最优化后处理过程的实验条件、优化工艺、降低实验成本和时间,并提高后处理流程数学模拟的准确性,本文基于随机森林、支持向量回归和K近邻这3种经典的机器学习算法建立了30%TBP/煤油-硝酸体系中主要组分铀、钚、硝酸的分配比数学模型... 为最优化后处理过程的实验条件、优化工艺、降低实验成本和时间,并提高后处理流程数学模拟的准确性,本文基于随机森林、支持向量回归和K近邻这3种经典的机器学习算法建立了30%TBP/煤油-硝酸体系中主要组分铀、钚、硝酸的分配比数学模型,并基于不同数据集进行了超参数优化和模型训练。通过对模型进行验证和测试,发现采用随机森林算法建立的分配比模型准确度最高,其对铀预测的平均绝对相对误差达7.73%,较传统方法提高了约7%。与传统建模方法相比,机器学习方法建立模型的准确度更高。 展开更多
关键词 分配比数学模型 随机森林 支持向量回归 K近邻
在线阅读 下载PDF
基于DWD-SVR模型的锂离子电池剩余使用寿命预测
15
作者 王小明 何叶 +3 位作者 王路路 吴红斌 徐斌 赵文广 《太阳能学报》 北大核心 2025年第2期52-59,共8页
针对锂离子电池容量退化特性的非线性和多尺度特性,提出一种基于离散小波分解(DWD)和支持向量回归(SVR)模型的锂离子电池RUL预测方法。首先,利用DWD对容量时间序列进行多尺度解耦,以降低局部再生和波动现象对预测结果的影响;其次,利用K... 针对锂离子电池容量退化特性的非线性和多尺度特性,提出一种基于离散小波分解(DWD)和支持向量回归(SVR)模型的锂离子电池RUL预测方法。首先,利用DWD对容量时间序列进行多尺度解耦,以降低局部再生和波动现象对预测结果的影响;其次,利用K-均值聚类方法将各尺度信号中样本熵与排列熵相近的子序列进行聚类,根据聚类结果将复杂度与随机性相近的子序列进行重构,以减少建模次数,提高预测效率;最后,通过SVR预测模型精确捕捉不同尺度下容量信号的变化情况,实现电池RUL准确预测。实验结果表明,提出的基于DWD-SVR模型的锂离子电池RUL预测方法能在保证全局退化趋势预测准确性的同时对波动进行及时地响应,可提高预测性能。 展开更多
关键词 锂离子电池 支持向量回归 K-均值聚类 剩余使用寿命 离散小波分解
在线阅读 下载PDF
基于红狐优化支持向量机回归的船舶备件预测
16
作者 孟冠军 杨思平 钱晓飞 《合肥工业大学学报(自然科学版)》 北大核心 2025年第1期25-31,共7页
针对以往船舶备件需求预测精度不高,无法满足船舶综合保障的实际问题,文章建立一种基于改进红狐优化算法(improved red fox optimization,IRFO)的支持向量机回归(support vector regression,SVR)的船舶备件预测模型。为进一步提高红狐... 针对以往船舶备件需求预测精度不高,无法满足船舶综合保障的实际问题,文章建立一种基于改进红狐优化算法(improved red fox optimization,IRFO)的支持向量机回归(support vector regression,SVR)的船舶备件预测模型。为进一步提高红狐优化算法(red fox optimization,RFO)的寻优精度,重构其全局搜索公式,并融合精英反向学习策略。采用基准测试函数对IRFO算法进行仿真实验,实验表明,IRFO算法比RFO算法、粒子群算法、灰狼优化算法寻优能力更强,综合性能更优。基于船舶备件历史数据,建立IRFO-SVR船舶备件预测模型,通过对比其他模型的预测结果,表明IRFO-SVR的预测效果更佳。 展开更多
关键词 船舶备件预测 红狐优化算法(RFO) 支持向量机回归(SVR) 精英反向学习
在线阅读 下载PDF
基于PSO-SVR算法的钢板-混凝土组合连梁承载力预测
17
作者 田建勃 闫靖帅 +2 位作者 王晓磊 赵勇 史庆轩 《振动与冲击》 北大核心 2025年第7期155-162,共8页
为准确预测钢板-混凝土组合(steel plate-RC composite,PRC)连梁承载力,本文分别通过支持向量机回归算法(support vector regression,SVR)、极端梯度提升算法(XGBoost)和粒子群优化的支持向量机回归(particle swarm optimization-suppor... 为准确预测钢板-混凝土组合(steel plate-RC composite,PRC)连梁承载力,本文分别通过支持向量机回归算法(support vector regression,SVR)、极端梯度提升算法(XGBoost)和粒子群优化的支持向量机回归(particle swarm optimization-support vector regression,PSO-SVR)算法进行了PRC连梁试验数据的回归训练,此外,通过使用Sobol敏感性分析方法分析了数据特征参数对PRC连梁承载力的影响。结果表明,基于SVR、极端梯度提升算法(extreme gradient boosting,XGBoost)和PSO-SVR的预测模型平均绝对百分比误差分别为5.48%、7.65%和4.80%,其中,基于PSO-SVR算法的承载力预测模型具有最高的预测精度,模型的鲁棒性和泛化能力更强。此外,特征参数钢板率(ρ_(p))、截面高度(h)和连梁跨高比(l_(n)/h)对PRC连梁承载力影响最大,三者全局影响指数总和超过0.75,其中,钢板率(ρ_(p))是对PRC连梁承载力影响最大的单一因素,一阶敏感性指数和全局敏感性指数分别为0.3423和0.3620,以期为PRC连梁在实际工程中的设计及应用提供参考。 展开更多
关键词 钢板-混凝土组合连梁 机器学习 粒子群优化的支持向量机回归(PSO-SVR)算法 承载力 敏感性分析
在线阅读 下载PDF
基于支持向量回归的三体船非线性横摇运动辨识
18
作者 顾跃 朱仁传 +1 位作者 李传庆 吴铖毓 《中国舰船研究》 北大核心 2025年第2期187-195,共9页
[目的]针对三体船横摇的非线性,提出CFD与支持向量回归(SVR)相结合的船体运动辨识建模方法,[方法]基于STAR-CCM+平台,对不同侧体横向位置三体船的强迫横摇运动进行数值模拟,并应用SVR方法对力矩时历曲线进行参数辨识,计算不同频率下船... [目的]针对三体船横摇的非线性,提出CFD与支持向量回归(SVR)相结合的船体运动辨识建模方法,[方法]基于STAR-CCM+平台,对不同侧体横向位置三体船的强迫横摇运动进行数值模拟,并应用SVR方法对力矩时历曲线进行参数辨识,计算不同频率下船体的附加质量与阻尼系数。[结果]结果表明,三体船阻尼系数呈现出较强的频率相关性;低频时阻尼非线性特征明显,舭龙骨阻尼成分占比较大。[结论]所提方法能够准确捕捉三体船横摇运动的非线性特征,相比于势流理论能够更好地考虑片体间流场的相互作用。 展开更多
关键词 三体船 非线性横摇阻尼 计算流体力学 支持向量回归 回归分析
在线阅读 下载PDF
两反式光学系统光机集成仿真与成像质量预测代理模型构建
19
作者 薛奋琪 巩浩 +3 位作者 刘检华 朱荣全 谢惟楚 雷静婷 《兵工学报》 北大核心 2025年第3期274-288,共15页
两反式光学系统广泛应用于空间遥感、探测制导等领域,装配是影响光学系统成像质量的关键环节,当前各种装配误差与光学系统成像质量之间的关联关系缺少系统研究,无法为光学系统实时装调提供支撑。提出两反光学系统装配与成像的联合仿真... 两反式光学系统广泛应用于空间遥感、探测制导等领域,装配是影响光学系统成像质量的关键环节,当前各种装配误差与光学系统成像质量之间的关联关系缺少系统研究,无法为光学系统实时装调提供支撑。提出两反光学系统装配与成像的联合仿真方法。采用有限元仿真方法获得镜面面形误差,利用Zernike多项式对其进行精确拟合,通过光学产品设计与分析软件对包含Zernike多项式的镜面变形误差和装配位姿偏差进行光路成像仿真,以能量集中度作为成像质量定量评价指标,获得不同装配误差条件下的光学系统成像质量数据。建立包含局部和全局混合核函数的支持向量回归(Support Vector Regression,SVR)代理模型,对装配误差和成像质量之间的关联关系进行精确拟合。研究结果表明:与单一核函数/无核函数的SVR模型相比,所建立的混合核函数SVR代理模型具有最小的成像质量预测误差(平均预测误差仅有6.51%);所提装配与成像联合仿真方法和混合核函数SVR代理模型,能够为不同装配误差条件下的光学系统实时装调提供辅助支撑。 展开更多
关键词 光学系统 装配误差 能量集中度 支持向量回归代理模型 混合核函数
在线阅读 下载PDF
基于HBA-SVR混合模型的斜式轴流泵变角性能预测
20
作者 郑海生 周佩剑 +3 位作者 肖刚 牟介刚 项春 钱亨 《计量学报》 北大核心 2025年第2期190-197,共8页
针对斜式轴流泵不同叶片角度下性能曲线获取难、耗费成本高的问题,提出了基于混合蝙蝠算法-支持向量回归模型(HBA-SVR)斜式轴流泵性能预测方法。在标准蝙蝠算法中加入方向加速策略和变异策略优化支持向量回归,利用斜30°轴流泵运行... 针对斜式轴流泵不同叶片角度下性能曲线获取难、耗费成本高的问题,提出了基于混合蝙蝠算法-支持向量回归模型(HBA-SVR)斜式轴流泵性能预测方法。在标准蝙蝠算法中加入方向加速策略和变异策略优化支持向量回归,利用斜30°轴流泵运行数据训练模型,并应用于斜式轴流泵变角性能预测。扬程、效率平均相对误差分别为1.49%、0.41%,收敛时间分别为15.47 s、18.78 s,相较于标准蝙蝠优化支持向量回归预测结果,收敛时间分别减少了122.11%、103.62%。对比PSO、GA、BA优化SVR,扬程预测误差分别降低了29.53%,70.46%,131.54%,效率预测误差分别降低了7.31%,9.75%,19.51%。结果表明所提出模型能快速、有效预测斜式轴流泵变角性能。 展开更多
关键词 流量计量 斜式轴流泵 支持向量回归 蝙蝠算法 叶片安放角 变角性能预测
在线阅读 下载PDF
上一页 1 2 59 下一页 到第
使用帮助 返回顶部