期刊文献+
共找到206篇文章
< 1 2 11 >
每页显示 20 50 100
基于云端数据充电初期片段的电池极化参数辨识
1
作者 王丽梅 崔艳伟 +3 位作者 孙景景 赵秀亮 刘良 盘朝奉 《汽车安全与节能学报》 北大核心 2025年第2期294-302,共9页
为了提高电池极化参数在线辨识的精度及速度,提出了一种基于云端数据的基准极化参数辨识方法。通过开展电池充放脉冲实验,研究电池极化参数特性;基于云端数据充电初期片段,采用类比混合脉冲功率性能(HPPC)方法,获取充电极化参数;以充电... 为了提高电池极化参数在线辨识的精度及速度,提出了一种基于云端数据的基准极化参数辨识方法。通过开展电池充放脉冲实验,研究电池极化参数特性;基于云端数据充电初期片段,采用类比混合脉冲功率性能(HPPC)方法,获取充电极化参数;以充电极化参数为约束,利用变遗忘因子递推最小二乘法(VFFRLS),计算了放电极化参数。结果表明:本文方法的电池时间常数范围为34~53 s,在云端相应小电流倍率下极化参数不随倍率变化;充电极化内阻和极化电容的计算结果与实验结果吻合;添加约束后的在线辨识方法的收敛速度,与未添加约束相比,最少提高了6%。 展开更多
关键词 电池充电放电 极化参数 云端数据 离线辨识 类比混合脉冲功率性能(HPPC)法 变遗忘因子递推最小二乘法(VFFRLS)
在线阅读 下载PDF
基于IFFRLS-IMMUKF的商用车磷酸铁锂电池SOC估算
2
作者 吴华伟 何成泽 +3 位作者 洪强 周小高 李明金 顾亚娟 《储能科学与技术》 北大核心 2025年第10期3996-4008,共13页
荷电状态(SOC)作为电动汽车剩余容量的表征参数,它的准确预估可以保障电动汽车的安全可靠性。针对复杂环境下电池SOC难以精确估算的问题,本工作基于动力电池特性构建了等效电路模型,并对电池模型状态方程进行了离散化的推演,在获得离散... 荷电状态(SOC)作为电动汽车剩余容量的表征参数,它的准确预估可以保障电动汽车的安全可靠性。针对复杂环境下电池SOC难以精确估算的问题,本工作基于动力电池特性构建了等效电路模型,并对电池模型状态方程进行了离散化的推演,在获得离散化状态方程的基础上,将金豺优化算法与遗忘因子递推最小二乘法(FFRLS)相结合提出了改进遗忘递推最小二乘法对电池模型进行了参数辨识。同时,联合交互式多模型无迹卡尔曼滤波(IMMUKF)算法对电池SOC进行估算,并在对常温和高温条件下的动态应力(DST)和联邦城市驾驶工况(FUDS)进行试验验证。结果表明,基于IFFRLS-IMMUKF的锂电池SOC估算方法,其平均绝对值误差在0.8%之内,对磷酸铁锂电池有较高的SOC估算精度。 展开更多
关键词 金豺优化算法 遗忘因子递推最小二乘法 交互式多模型无迹卡尔曼滤波 荷电状态
在线阅读 下载PDF
基于FFRLS-MIUKF算法的全钒液流电池荷电状态估计方法
3
作者 郑涛 贾泽峰 +2 位作者 邱亚 李俊伟 侯谋 《热力发电》 北大核心 2025年第4期68-76,共9页
针对全钒液流电池的荷电状态(state of charge,SOC)估计难度大、成本高、准确性差等问题,提出一种基于带遗忘因子的递推最小二乘法(forgetting factor recursive least squares,FFRLS)和多新息无迹卡尔曼滤波(multiple innovation unsce... 针对全钒液流电池的荷电状态(state of charge,SOC)估计难度大、成本高、准确性差等问题,提出一种基于带遗忘因子的递推最小二乘法(forgetting factor recursive least squares,FFRLS)和多新息无迹卡尔曼滤波(multiple innovation unscented Kalman filter,MIUKF)的全钒液流电池荷电状态估计方法。该方法通过FFRLS在线辨识全钒液流电池等效电路模型参数,然后通过MIUKF进行荷电状态估计,从而达到准确估计全钒液流电池荷电状态的目的。最后,利用实验平台对5 kW/30 kW·h的全钒液流电池采用所提出方法进行验证,实验结果表明,相较于RLS-UKF算法和FFRLS-UKF算法,FFRLS-MIUKF算法在荷电状态估计中表现最优,其充电阶段与放电阶段均方误差与均方根误差更低,均方误差与均方根误差在充电阶段分别为0.0037、0.0609,在放电阶段分别为0.0013、0.0363。 展开更多
关键词 全钒液流电池 SOC估计 递推最小二乘 多新息无迹卡尔曼滤波 遗忘因子
在线阅读 下载PDF
基于AFFRLS-MIAUKF算法的锂离子电池SOC估算
4
作者 王君瑞 李进 +1 位作者 季长江 谭露 《现代电子技术》 北大核心 2025年第10期7-14,共8页
在锂离子电池荷电状态(SOC)估算过程中,建立合适的模型是第一步,模型中参数的辨识精度对估算SOC至关重要。为提高锂离子电池SOC的估算精度,提出一种基于自适应遗忘因子递推最小二乘(AFFRLS)与多新息自适应无迹卡尔曼滤波(MIAUKF)相结合... 在锂离子电池荷电状态(SOC)估算过程中,建立合适的模型是第一步,模型中参数的辨识精度对估算SOC至关重要。为提高锂离子电池SOC的估算精度,提出一种基于自适应遗忘因子递推最小二乘(AFFRLS)与多新息自适应无迹卡尔曼滤波(MIAUKF)相结合的算法来估算电池SOC。以三元锂电池为实验对象,建立二阶RC等效电路模型,采用离线辨识和自适应遗忘因子递推最小二乘两种方法实现模型参数的辨识。在复合脉冲功率特性实验(HPPC)工况下,使用AFFRLS-MIAUKF算法对锂离子电池SOC进行估算,并与离线辨识MIAUKF算法和UKF算法相对比。实验结果表明,AFFRLS-MIAUKF算法具有更高的精度,平均误差能保持在0.5%以内。 展开更多
关键词 锂离子电池 电池荷电状态估算 无迹卡尔曼滤波 自适应遗忘因子递推最小二乘 多新息理论 等效电路模型
在线阅读 下载PDF
基于最小二乘孪生极限学习机的水电系统发电能力预测方法
5
作者 李旻 孙大雁 +3 位作者 梁志峰 过夏明 吴刚 苗树敏 《水利水电技术(中英文)》 北大核心 2025年第8期162-174,共13页
【目的】针对传统水电发电能力预测精度低、稳定性差等问题。【方法】提出了耦合模态分解、机器学习和群体智能的水电系统发电能力混合预测模型。首先,利用逐次变分模态分解法(SVMD)对原始出力序列进行分解降噪,提取出多尺度特征信号进... 【目的】针对传统水电发电能力预测精度低、稳定性差等问题。【方法】提出了耦合模态分解、机器学习和群体智能的水电系统发电能力混合预测模型。首先,利用逐次变分模态分解法(SVMD)对原始出力序列进行分解降噪,提取出多尺度特征信号进行分类建模;随后,采用最小二乘孪生极限学习机(LSTELM)对各分解信号进行预测建模,同时运用改进灰狼优化算法(IGWO)对模型参数进行优化,以提升模型的预测性能;最后对各子序列预测结果进行集成,叠加得到最终的预测结果。【结果】结果显示:所提方法在三个水电站中的预测结果精准可靠。在池潭水电站中,预见期为1 d时,所提模型在直接策略和多输入多输出策略中预测结果的纳什系数(NSE)指标较极限学习机模型分别提高了12.88%和12.11%。预见期由1 d增长至8 d时,传统方法预测结果的NSE指标由0.8840和0.8885逐渐降低到0.5735和0.5671,而本文所提两种策略预测结果分别由0.9979和0.9961逐渐降低到0.9423和0.9286。【结论】结果表明:所提模型在复杂水电系统发电能力预测中具有较强的稳定性和泛化能力,SVMD有效降低了发电能力序列的噪声影响,最小二乘法和孪生结构提升了LSTELM模型的泛化能力,SVMD-IGWO-LSTELM模型在水文特性稳定的水电站预测精度更高,在水文特性复杂的水电站预测能力略有下降但依旧保持高精度,为变化环境下水电系统发电能力预测提供有效方法。 展开更多
关键词 逐次变分模态分解法 发电出力 最小二乘孪生极限学习机 改进灰狼优化算法 影响因素
在线阅读 下载PDF
不同温度下锂离子电池自适应多状态联合估计 被引量:1
6
作者 王中伟 杨坤 +2 位作者 马超 王记磊 王杰 《汽车技术》 北大核心 2025年第4期20-31,共12页
为了准确估计不同温度下电池参数、荷电状态及功率状态,提出基于自适应遗忘因子的递推最小二乘法联合自适应扩展卡尔曼滤波算法。通过实时校正、更新参数,提升电池参数辨识和荷电状态估计的精度;以模型端电压辨识结果、荷电状态估计结... 为了准确估计不同温度下电池参数、荷电状态及功率状态,提出基于自适应遗忘因子的递推最小二乘法联合自适应扩展卡尔曼滤波算法。通过实时校正、更新参数,提升电池参数辨识和荷电状态估计的精度;以模型端电压辨识结果、荷电状态估计结果及电池最大放电电流为约束,实现电池功率状态联合估计。试验结果表明:动态应力测试工况下,辨识电压最大绝对误差和荷电状态最大绝对误差结果分别为62.699 mV和1.894%;当持续放电时间为5 s、30 s和120 s时,电池功率的平均误差分别为5.6×10^(-3) W、6.5×10^(-3) W及8.0×10^(-3) W,所提出的自适应联合估计算法可有效提高参数辨识和状态估计的精度。 展开更多
关键词 锂离子电池 自适应遗忘因子递推最小二乘法 自适应扩展卡尔曼滤波 在线参数辨识 联合估计
在线阅读 下载PDF
基于车辆动力学和改进的FFRLS算法在线估算电动公交能耗
7
作者 张馨方 闫艺萍 +2 位作者 张哲 徐志刚 张立成 《汽车安全与节能学报》 北大核心 2025年第5期747-756,共10页
为提高电动公交汽车能耗预测模型在实时性、精度和可解释性方面的表现,该文提出了一种融合车辆动力学模型和数据驱动参数辨识的分工况能耗预测模型。该模型根据加速、匀速和减速3种工况,分别建立瞬时功率方程,并通过驾驶段划分计算累计... 为提高电动公交汽车能耗预测模型在实时性、精度和可解释性方面的表现,该文提出了一种融合车辆动力学模型和数据驱动参数辨识的分工况能耗预测模型。该模型根据加速、匀速和减速3种工况,分别建立瞬时功率方程,并通过驾驶段划分计算累计能耗;通过引入带遗忘因子的递推最小二乘法(FFRLS)对模型参数进行在线识别,并结合粒子群优化算法(PSO)优化初始参数和遗忘因子,构建了具备实时在线预测能力的能耗模型IFFRLS。结果表明:所提模型的预测能力优异,最高决定系数(R2)达0.977,平均绝对百分比误差(MAPE)为11.16%,明显优于未改进的模型。 展开更多
关键词 电动公交汽车 能耗 参数辨识 车辆动力学 带遗忘因子的最小二乘法(FFRLS)
在线阅读 下载PDF
双有源桥变换器自适应参数辨识鲁棒预测控制
8
作者 尹政 邓富金 +1 位作者 黄堃 詹昕 《电机与控制学报》 北大核心 2025年第2期74-84,95,共12页
针对双有源桥(DAB)变换器传统模型预测控制(MPC)输出电压性能对系统参数变化较为敏感的问题,提出一种基于自适应参数辨识的DAB变换器鲁棒预测控制方法。本研究采用递归最小二乘法构建参数辨识矩阵,通过在线实时校正DAB系统的电感与电容... 针对双有源桥(DAB)变换器传统模型预测控制(MPC)输出电压性能对系统参数变化较为敏感的问题,提出一种基于自适应参数辨识的DAB变换器鲁棒预测控制方法。本研究采用递归最小二乘法构建参数辨识矩阵,通过在线实时校正DAB系统的电感与电容动态参数,有效增强了MPC在变工况下的鲁棒特性;通过参数误差反馈及门槛值设置,在每个控制周期中根据误差大小自适应调整遗忘因子,提高参数辨识准确性及收敛速度;结合系统采样和参数辨识结果,实现未来时刻的电压预测,并通过价值函数评估最优移相角,应用在下一个控制周期。该方法可以实时辨识DAB系统电感和电容参数,消除了参数失配对预测控制的影响,保证了输出电压性能。最后,通过仿真和硬件实验平台验证了所提方法在稳态、动态以及参数辨识下的运行性能。 展开更多
关键词 双有源桥变换器 模型预测控制 参数辨识 递归最小二乘法 自适应遗忘因子 鲁棒性
在线阅读 下载PDF
变刚度环境下机械臂的阻抗控制方法 被引量:1
9
作者 宫大为 谢俊翔 +2 位作者 代小林 何永琦 刘柏君 《哈尔滨工程大学学报》 北大核心 2025年第5期928-935,共8页
针对传统阻抗控制在刚度变化的情况下存在力波动剧烈、力跟踪误差较大的缺点,本文提出了一种基于递推最小二乘法在线辨识环境刚度并进行位移补偿的阻抗控制,提高变刚度环境下阻抗控制的性能。通过构建改进的阻抗控制模型,进而减小刚度... 针对传统阻抗控制在刚度变化的情况下存在力波动剧烈、力跟踪误差较大的缺点,本文提出了一种基于递推最小二乘法在线辨识环境刚度并进行位移补偿的阻抗控制,提高变刚度环境下阻抗控制的性能。通过构建改进的阻抗控制模型,进而减小刚度突变情况下阻抗控制的稳态误差与力波动。利用Matlab/Simulink软件进行仿真实验,结果表明:环境刚度改变的情况下,改进的阻抗控制器能消除跟踪力的稳态误差并减小刚度突变时的力波动。通过实验平台验证了机械臂在不同刚度表面进行力跟踪时仍具有良好的跟踪力性能。本文算法与实验结论可应用于工业机械臂力控制。 展开更多
关键词 机械臂 力控制 柔顺控制 阻抗控制 递推最小二乘法 遗忘因子 变刚度 参数辨识
在线阅读 下载PDF
加减速时变流场下球体水动力载荷特性试验研究
10
作者 郭正阳 张鹏 +2 位作者 任浩杰 姚鸿飞 杜君峰 《中国海上油气》 北大核心 2025年第3期254-263,共10页
在海底采矿和深水整平等实际工程应用中,矿石和石料等类球体颗粒在管道中的运动及载荷特性直接决定了深海采矿泵机功率选择以及深水整平管道阻塞概率。针对当前管道中类球体存在的时变流场水动力载荷特性认识不清问题,搭建加减速球体水... 在海底采矿和深水整平等实际工程应用中,矿石和石料等类球体颗粒在管道中的运动及载荷特性直接决定了深海采矿泵机功率选择以及深水整平管道阻塞概率。针对当前管道中类球体存在的时变流场水动力载荷特性认识不清问题,搭建加减速球体水动力载荷测定试验装置,开展了匀速和加减速球体拖曳模型试验,同步测得球体运动及水动力载荷信息,采取遗忘因子最小二乘法对加减速状态下时变水动力载荷系数进行识别。结果表明:在加速和减速状态下,水动力载荷和载荷系数表现出滞后和非对称特点,其在加速阶段明显大于减速阶段;与匀速状态相比,加速与减速情况下,球体所受到的拖曳力系数和附加质量系数明显偏大;加速与减速状态下水动力载荷系数随无因次加速度因子增大呈增长趋势。该研究揭示了加减速时变流场对球体水动力载荷特性的影响,对海底采矿和深水整平等工程应用提供了参考。 展开更多
关键词 海底采矿 时变流场 球体 水动力载荷 模型试验 遗忘因子最小二乘法 拖曳力系数
在线阅读 下载PDF
高寒环境下便携式移动电源多模态协同充电系统设计
11
作者 张小成 郭强 +2 位作者 赵光焱 戴云龙 杨鑫宇 《仪器仪表学报》 北大核心 2025年第6期83-95,共13页
针对锂离子电池在高寒环境下诱发电化学性能衰退,导致便携式移动电源充电效率降低甚至功能失效的问题,设计一种便携式移动电源多模态协同充电系统。通过深入揭示锂离子电池低温电化学机理与充电行为机制,重点探究电-热等多物理场间的耦... 针对锂离子电池在高寒环境下诱发电化学性能衰退,导致便携式移动电源充电效率降低甚至功能失效的问题,设计一种便携式移动电源多模态协同充电系统。通过深入揭示锂离子电池低温电化学机理与充电行为机制,重点探究电-热等多物理场间的耦合关系,进而提出优化预热结构设计及电热协同动态充电控制策略。首先,采用聚酰亚胺基柔性电加热膜复合氮化铝/石墨烯高导热材料结构,显著提升传热速率与均匀性,快速恢复电池充电性能;其次,针对电池内部温度难以直接测量的限制,基于遗忘因子的递推最小二乘法在线辨识热容、热阻等关键参数漂移量,构建高精度时变参数热路模型,有效提升内部温度预测精度;同时,融合无迹卡尔曼滤波算法,形成双闭环协同估计架构,实时递推更新与校正温度状态量,实现内部温度动态观测。实验验证表明,所设计系统可实现电池内部温升速率达5℃/min,热路模型系统性误差稳定在0.2℃以内,在-30℃、-20℃和-10℃等多种典型低温工况下,内部温度预测误差严格控制在±1℃置信区间内、最大绝对误差仅0.6℃以及均方根误差最大仅0.4℃,有效解决了高寒环境下便携式移动电源充电失效的关键难题,为高寒环境能源保障体系提供创新性理论依据与工程技术参考。 展开更多
关键词 低温充电 内部温度预测 遗忘因子递推最小二乘法 无迹卡尔曼滤波
在线阅读 下载PDF
基于双调节因子的GNSS/SINS组合导航Sage-Husa自适应滤波算法
12
作者 林雪原 孙炜玮 孙晓范 《大地测量与地球动力学》 北大核心 2025年第7期699-704,共6页
在GNSS/SINS组合导航系统中,当测量噪声方差发生变化时,Sage-Husa自适应滤波算法的测量噪声方差估计功能与故障检测功能有可能相互冲突。为解决该问题,首先,根据故障检测函数设计控制因子,对Sage-Husa自适应滤波算法的测量噪声方差估计... 在GNSS/SINS组合导航系统中,当测量噪声方差发生变化时,Sage-Husa自适应滤波算法的测量噪声方差估计功能与故障检测功能有可能相互冲突。为解决该问题,首先,根据故障检测函数设计控制因子,对Sage-Husa自适应滤波算法的测量噪声方差估计模型进行在线调整;然后,根据Sage-Husa自适应滤波算法严重依赖遗忘因子的特性,设计动态遗忘因子以对测量噪声方差进行准确跟踪,进而提出一种基于双调节因子(控制因子和动态遗忘因子)的Sage-Husa自适应滤波(DRSHAKF)算法;最后,基于施加了容错功能的Sage-Husa自适应滤波(SHAKF)算法及DRSHAKF算法,进行组合导航系统的仿真实验。结果表明,相对于SHAKF算法,DRSHAKF算法可以将测量噪声方差估计功能与故障检测函数进行有机融合,充分利用有用的测量信息,进而提高系统滤波精度。 展开更多
关键词 Sage-Husa算法 自适应滤波算法 组合导航系统 遗忘因子 控制因子
在线阅读 下载PDF
基于VFFRLS-ASRRF的锂离子电池SOC估计
13
作者 李美丽 刘昊 冯子亮 《电池》 北大核心 2025年第3期554-560,共7页
精确建模及高精度估计荷电状态(SOC)是锂离子电池应用的关键。结合可变遗忘因子递推最小二乘(VFFRLS)与自适应平方根秩滤波(ASRRF)算法,进行SOC估计。ASRRF算法能处理模型的非线性和测量噪声,通过捕获电池的连续时间动态来提高估计精度... 精确建模及高精度估计荷电状态(SOC)是锂离子电池应用的关键。结合可变遗忘因子递推最小二乘(VFFRLS)与自适应平方根秩滤波(ASRRF)算法,进行SOC估计。ASRRF算法能处理模型的非线性和测量噪声,通过捕获电池的连续时间动态来提高估计精度。在MATLAB环境中仿真,比较秩滤波(RF)和ASRRF算法在相似噪声下的性能。VFFRLS-ASRRF算法在联邦城市驾驶工况(FUDS)和US06工况下,SOC估计精度分别为1.8%和1.3%,均优于VFFRLS-RF算法。 展开更多
关键词 锂离子电池 荷电状态(SOC) 可变遗忘因子递推最小二乘(VFFRLS) 自适应平方根秩滤波(ASRRF)
在线阅读 下载PDF
基于双模型的递推最小二乘永磁同步直线电机电气参数在线辨识
14
作者 鲍明堃 周扬忠 《电源学报》 北大核心 2025年第3期343-353,共11页
为了实现永磁同步直线电机PMSLM(permanent magnet synchronous linear motor)高精度的多电气参数在线辨识,提出了一种基于双模型的递推最小二乘电气参数在线辨识算法。首先,根据电机的dq轴电压方程分别建立了辨识定子电阻、永磁体磁链... 为了实现永磁同步直线电机PMSLM(permanent magnet synchronous linear motor)高精度的多电气参数在线辨识,提出了一种基于双模型的递推最小二乘电气参数在线辨识算法。首先,根据电机的dq轴电压方程分别建立了辨识定子电阻、永磁体磁链的模型1和辨识q轴电感、d轴电感的模型2,并将2个辨识模型循环结合。其次,基于上述双模型结构,采用递推最小二乘算法实现电气参数在线辨识,并针对PMSLM运行时存在大量动态过程的特性,提出一种具有饱和特性的分段变遗忘因子;然后,对功率开关非理想因素导致的误差电压进行补偿,进一步提高了辨识的精准度;最后,仿真和实验结果证明了该辨识算法的有效性,且具有收敛速度快、辨识结果精度高、多工况适用等优点。 展开更多
关键词 永磁同步直线电机 在线辨识 变遗忘因子 递推最小二乘 双模型 功率开关非理想因素补偿
在线阅读 下载PDF
基于FFRLS-AIEKF的锂离子电池SOC估计
15
作者 阮爱国 史仰泽 +5 位作者 王方钦 黄开义 陈太刚 梁大鸿 陈海波 陈思文 《电池》 北大核心 2025年第3期529-535,共7页
针对电池模型参数辨识不准确及扩展卡尔曼滤波(EKF)法无法正确确定外界噪声的影响,导致锂离子电池荷电状态(SOC)估计误差偏大的问题,提出一种遗忘因子递推最小二乘(FFRLS)-自适应迭代策略的EKF(AIEKF)算法。以双极化等效电路模型为基础... 针对电池模型参数辨识不准确及扩展卡尔曼滤波(EKF)法无法正确确定外界噪声的影响,导致锂离子电池荷电状态(SOC)估计误差偏大的问题,提出一种遗忘因子递推最小二乘(FFRLS)-自适应迭代策略的EKF(AIEKF)算法。以双极化等效电路模型为基础,先利用FFRLS进行在线参数辨识,再将所辨识的各参数传给由EKF和迭代策略结合得到的AIEKF,完成对SOC估计。基于MATLAB进行仿真验证,用SOC估计的误差曲线、平均绝对误差及均方根误差的数值进行对比。相较于FFRLS-EKF算法,所提FFRLS-AIEKF算法的SOC估计精度更高,最大估计误差为1.6%。 展开更多
关键词 锂离子电池 遗忘因子递推最小二乘(FFRLS) 自适应迭代策略的扩展卡尔曼滤波(AIEKF) 荷电状态(SOC)
在线阅读 下载PDF
基于含可变遗忘因子递推最小二乘的电力系统惯量评估方法
16
作者 周茂一 黄婷钰 +3 位作者 刘子文 党子妍 许云皓 牛子扬 《电力工程技术》 北大核心 2025年第5期148-158,共11页
随着大规模可再生能源的并网和电力系统电力电子化水平的提升,近年来因惯量水平不足导致的电力系统运行稳定弱化问题时有发生。为此,准确评估高比例新能源电力系统的惯量水平,能够为惯量提升方案的制定提供基础,对于保障电网的安全稳定... 随着大规模可再生能源的并网和电力系统电力电子化水平的提升,近年来因惯量水平不足导致的电力系统运行稳定弱化问题时有发生。为此,准确评估高比例新能源电力系统的惯量水平,能够为惯量提升方案的制定提供基础,对于保障电网的安全稳定运行具有重要作用。鉴于此,文中提出一种基于含可变遗忘因子递推最小二乘的电力系统惯量评估方法。首先,构建含高斯白噪声的电力系统受控自回归滑动平均(controlled autoregressive moving average,CARMA)惯量评估模型;然后,使用赤池信息准则(Akaike information criterion,AIC)确定合适的辨识模型阶次,改善模型过拟合问题,并提出基于指数衰减型可变遗忘因子的改进递推最小二乘算法,通过增强算法对量测数据动态变化的跟踪能力解决数据饱和问题,从而提高惯量辨识结果的准确性;最后,基于算例仿真验证所提方法的有效性和优越性。 展开更多
关键词 电网惯量估计 系统辨识 受控自回归滑动平均(CARMA)模型 赤池信息准则(AIC) 可变遗忘因子 递推最小二乘
在线阅读 下载PDF
Iterative circle fitting based on circular attracting factor
17
作者 王恒升 张强 王福亮 《Journal of Central South University》 SCIE EI CAS 2013年第10期2663-2675,共13页
An intuitive method for circle fitting is proposed. Assuming an approximate circle(CA,n) for the fitting of some scattered points, it can be imagined that every point would apply a force to CA,n, which all together fo... An intuitive method for circle fitting is proposed. Assuming an approximate circle(CA,n) for the fitting of some scattered points, it can be imagined that every point would apply a force to CA,n, which all together form an overall effect that "draws" CA,n towards best fitting to the group of points. The basic element of the force is called circular attracting factor(CAF) which is defined as a real scalar in a radial direction of CA,n. An iterative algorithm based on this idea is proposed, and the convergence and accuracy are analyzed. The algorithm converges uniformly which is proved by the analysis of Lyapunov function, and the accuracy of the algorithm is in accord with that of geometric least squares of circle fitting. The algorithm is adopted to circle detection in grayscale images, in which the transferring to binary images is not required, and thus the algorithm is less sensitive to lightening and background noise. The main point for the adaption is the calculation of CAF which is extended in radial directions of CA,n for the whole image. All pixels would apply forces to CA,n, and the overall effect of forces would be equivalent to a force from the centroid of pixels to CA,n. The forces from would-be edge pixels would overweigh that from noisy pixels, so the following approximate circle would be of better fitting. To reduce the amount of calculation, pixels are only used in an annular area including the boundary of CA,n just in between for the calculation of CAF. Examples are given, showing the process of circle fitting of scattered points around a circle from an initial assuming circle, comparing the fitting results for scattered points from some related literature, applying the method proposed for circular edge detection in grayscale images with noise, and/or with only partial arc of a circle, and for circle detection in BGA inspection. 展开更多
关键词 circle detection circle FITTING GRAYSCALE image ITERATIVE algorithm least squares fitting(LSF) CIRCULAR attracting factor(CAF) BGA inspection
在线阅读 下载PDF
最小二乘算法优化及其在锂离子电池参数辨识中的应用 被引量:16
18
作者 范兴明 封浩 张鑫 《电工技术学报》 EI CSCD 北大核心 2024年第5期1577-1588,共12页
传统最小二乘法(LS)用于锂离子电池模型在线参数辨识精度低,通过带遗忘因子递推最小二乘算法能够有效地提高辨识精度,但固定的遗忘因子影响模型动态特性。遗忘因子的自适应处理能提高算法对动态系统的参数辨识能力,而目前的自适应方法... 传统最小二乘法(LS)用于锂离子电池模型在线参数辨识精度低,通过带遗忘因子递推最小二乘算法能够有效地提高辨识精度,但固定的遗忘因子影响模型动态特性。遗忘因子的自适应处理能提高算法对动态系统的参数辨识能力,而目前的自适应方法容易忽略模型参数的稳定性,同时方法待定系数范围较大且难以确认。为了得到高精度且稳定性良好的模型参数,该文设计了一种精度和稳定性兼优且更简单的自适应遗忘因子递推最小二乘(AFFRLS)改进方法,并与其他AFFRLS、可变遗忘因子递推最小二乘(VFFRLS)进行仿真对比分析。结果表明,改进的AFFRLS能够在模型精度和参数稳定性取得更好的平衡,且对不同的在线工况具有良好的适用性。 展开更多
关键词 锂离子电池模型 参数辨识 最小二乘法 自适应遗忘因子
在线阅读 下载PDF
基于改进初值带遗忘因子的递推最小二乘法的锂电池参数辨识 被引量:4
19
作者 王文 史华泽 +3 位作者 岳雨霏 黎隆基 吴传平 童宇轩 《电力科学与技术学报》 CAS CSCD 北大核心 2024年第4期178-186,共9页
锂电池荷电状态(state of charge,SOC)的准确估计依赖于精确的锂电池模型参数。在采用带遗忘因子的递推最小二乘法(forgetting factor recursive least square,FFRLS)对锂电池等效电路模型进行参数辨识时,迭代初始值选取不当会造成辨识... 锂电池荷电状态(state of charge,SOC)的准确估计依赖于精确的锂电池模型参数。在采用带遗忘因子的递推最小二乘法(forgetting factor recursive least square,FFRLS)对锂电池等效电路模型进行参数辨识时,迭代初始值选取不当会造成辨识精度低、收敛速度慢的问题。为此,将电路分析法与FFRLS相结合,提出基于改进初值带遗忘因子的递推最小二乘法(improved initial value-FFRLS,IIV-FFRLS)。首先,通过离线辨识得到各荷电状态点对应的等效电路模型参数并进行多项式拟合;然后,利用初始开路电压(open circuit voltage,OCV)和OCV-SOC曲线获得初始SOC,代入参数拟合函数得到初始参数;最后,将初始参数带入递推公式得到IIV-FFRLS迭代初始值。对4种锂电池工况进行参数辨识,结果表明:与传统方法相比,IIV-FFRLS的平均相对误差、收敛时间分别减小58%、23%以上;IIV-FFRLS具有更高的辨识精度与更快的收敛速度。 展开更多
关键词 锂离子电池 参数辨识 带遗忘因子的递推最小二乘算法 迭代初始值
在线阅读 下载PDF
基于变遗忘因子的改进卡尔曼滤波锂电池荷电状态估算研究
20
作者 张涛 陈东明 +1 位作者 侯鹏鹏 王尧彬 《河南理工大学学报(自然科学版)》 CAS 北大核心 2024年第4期126-132,共7页
目的 为了解决锂电池在不同放电阶段和噪声干扰下荷电状态(SOC)估算结果发散问题,方法 通过分析锂电池机理特性,查找影响估算结果的因素和原因。选取适当的数学模型并得到开路电压特性-荷电状态(OCV-SOC)试验曲线后,针对传统算法估算误... 目的 为了解决锂电池在不同放电阶段和噪声干扰下荷电状态(SOC)估算结果发散问题,方法 通过分析锂电池机理特性,查找影响估算结果的因素和原因。选取适当的数学模型并得到开路电压特性-荷电状态(OCV-SOC)试验曲线后,针对传统算法估算误差波动较大的问题,提出变遗忘因子递推最小二乘(VFF-RLS)与自适应平方根无迹卡尔曼滤波(ASRUKF)算法联合估算SOC。结果 以动态应力测试(DST)为例,遗忘因子最小二乘(FFRLS)算法的开路电压初期误差最大值为0.02 V,稳定后端电压误差为0.004~0.010 V,误差收敛时间约45 s;UKF算法的SOC估算初期最大误差为0.03,在400 s左右逐渐收敛到理论值附近,稳定后的波动误差为0.83%;VFF-RLS算法在相同的条件下,开路电压实验初期误差最大值为0.04 V,稳定后端电压误差为0.003~0.007 V,误差收敛时间约10 s;ASRUKF的SOC估算初期最大误差为0.1,随着算法迭代,200 s内收敛到理论值附近,稳定后最大波动误差0.413%。结论 为了保证算法适用的普遍性,在不同初值下观察算法的收敛性,结果表明,在复杂的试验工况下,与传统算法比较,改进算法的参数辨识速度明显加快,精度提高,在估算SOC阶段,波动范围明显变小;在实际值误差较大的情况下,依然能够迅速收敛,证明本文方法的改进切实可行,可用于实际电池研究。 展开更多
关键词 锂电池 变遗忘因子 荷电状态 自适应滤波 平方根滤波
在线阅读 下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部