As the solutions of the least squares support vector regression machine (LS-SVRM) are not sparse, it leads to slow prediction speed and limits its applications. The defects of the ex- isting adaptive pruning algorit...As the solutions of the least squares support vector regression machine (LS-SVRM) are not sparse, it leads to slow prediction speed and limits its applications. The defects of the ex- isting adaptive pruning algorithm for LS-SVRM are that the training speed is slow, and the generalization performance is not satis- factory, especially for large scale problems. Hence an improved algorithm is proposed. In order to accelerate the training speed, the pruned data point and fast leave-one-out error are employed to validate the temporary model obtained after decremental learning. The novel objective function in the termination condition which in- volves the whole constraints generated by all training data points and three pruning strategies are employed to improve the generali- zation performance. The effectiveness of the proposed algorithm is tested on six benchmark datasets. The sparse LS-SVRM model has a faster training speed and better generalization performance.展开更多
To overcome the disadvantage that the standard least squares support vector regression(LS-SVR) algorithm is not suitable to multiple-input multiple-output(MIMO) system modelling directly,an improved LS-SVR algorithm w...To overcome the disadvantage that the standard least squares support vector regression(LS-SVR) algorithm is not suitable to multiple-input multiple-output(MIMO) system modelling directly,an improved LS-SVR algorithm which was defined as multi-output least squares support vector regression(MLSSVR) was put forward by adding samples' absolute errors in objective function and applied to flatness intelligent control.To solve the poor-precision problem of the control scheme based on effective matrix in flatness control,the predictive control was introduced into the control system and the effective matrix-predictive flatness control method was proposed by combining the merits of the two methods.Simulation experiment was conducted on 900HC reversible cold roll.The performance of effective matrix method and the effective matrix-predictive control method were compared,and the results demonstrate the validity of the effective matrix-predictive control method.展开更多
Least square support vector regression(LSSVR)is a method for function approximation,whose solutions are typically non-sparse,which limits its application especially in some occasions of fast prediction.In this paper,a...Least square support vector regression(LSSVR)is a method for function approximation,whose solutions are typically non-sparse,which limits its application especially in some occasions of fast prediction.In this paper,a sparse algorithm for adaptive pruning LSSVR algorithm based on global representative point ranking(GRPR-AP-LSSVR)is proposed.At first,the global representative point ranking(GRPR)algorithm is given,and relevant data analysis experiment is implemented which depicts the importance ranking of data points.Furthermore,the pruning strategy of removing two samples in the decremental learning procedure is designed to accelerate the training speed and ensure the sparsity.The removed data points are utilized to test the temporary learning model which ensures the regression accuracy.Finally,the proposed algorithm is verified on artificial datasets and UCI regression datasets,and experimental results indicate that,compared with several benchmark algorithms,the GRPR-AP-LSSVR algorithm has excellent sparsity and prediction speed without impairing the generalization performance.展开更多
The pruning algorithms for sparse least squares support vector regression machine are common methods, and easily com- prehensible, but the computational burden in the training phase is heavy due to the retraining in p...The pruning algorithms for sparse least squares support vector regression machine are common methods, and easily com- prehensible, but the computational burden in the training phase is heavy due to the retraining in performing the pruning process, which is not favorable for their applications. To this end, an im- proved scheme is proposed to accelerate sparse least squares support vector regression machine. A major advantage of this new scheme is based on the iterative methodology, which uses the previous training results instead of retraining, and its feasibility is strictly verified theoretically. Finally, experiments on bench- mark data sets corroborate a significant saving of the training time with the same number of support vectors and predictive accuracy compared with the original pruning algorithms, and this speedup scheme is also extended to classification problem.展开更多
针对接收信号强度(received signal strength,RSS)的时变性降低WLAN室内定位精度的问题,提出了一种基于核直接判别分析(kernel direct discriminant analysis,KDDA)和混洗蛙跳最小二乘支持向量回归机(SFLA-LSSVR)的定位算法,该算法通过...针对接收信号强度(received signal strength,RSS)的时变性降低WLAN室内定位精度的问题,提出了一种基于核直接判别分析(kernel direct discriminant analysis,KDDA)和混洗蛙跳最小二乘支持向量回归机(SFLA-LSSVR)的定位算法,该算法通过核函数策略将采集的各接入点(access point,AP)的RSS信号映射到非线性领域,有效提取了非线性定位特征,重组定位信息,去除冗余定位特征和噪声;然后采用LSSVR算法构建指纹点定位特征数据与物理位置的映射关系模型,采用SFLA算法优化该关系模型的参数,并用该关系模型对测试点的位置进行回归预测.实验结果表明:提出算法在相同的采样次数下的定位精度明显优于WKNN,ANN,LSSVR算法,并且在相同的定位精度下,采样次数较大减少,是一种性能良好的WLAN室内定位算法.展开更多
针对最小二乘支持向量回归(Least Square Support Vector Regression,LSSVR)建模风电功率时变特性的局限性,提出了一种基于动态集成LSSVR的超短期风电功率预测模型.首先利用风电场监测控制与数据采集(Supervisory Control And Data Acqu...针对最小二乘支持向量回归(Least Square Support Vector Regression,LSSVR)建模风电功率时变特性的局限性,提出了一种基于动态集成LSSVR的超短期风电功率预测模型.首先利用风电场监测控制与数据采集(Supervisory Control And Data Acquisition,SCADA)与数值天气预报(Numerical Weather Prediction,NWP)系统的历史数据建立离线单体LSSVR模型库,然后根据预测时段与训练时段NWP序列的相似度从单体LSSVR模型库中动态选择候选集成成员,再后综合考虑正确性与多样性确定集成成员.最后由预测时段与训练时段NWP序列间的相似度分配集成LSSVR成员的权重.通过对湖南省某风电场输出功率进行预测,验证了动态集成LSSVR预测模型的有效性,与持续法、自回归求和移动平均法、单体LSSVR模型、常权重LSSVR组合模型及BPNN动态集成模型相比,动态集成LSSVR模型具有更高的精度,在天气非平稳变化阶段更加明显.展开更多
潮流计算及其灵敏度分析是电力系统稳态分析与控制的基础。传统基于模型驱动的潮流计算是在电网拓扑和模型参数完备条件下,通过构建节点功率非线性方程并采用迭代方式进行求解的,灵敏度则由潮流雅可比矩阵求逆获取。模型及参数的准确性...潮流计算及其灵敏度分析是电力系统稳态分析与控制的基础。传统基于模型驱动的潮流计算是在电网拓扑和模型参数完备条件下,通过构建节点功率非线性方程并采用迭代方式进行求解的,灵敏度则由潮流雅可比矩阵求逆获取。模型及参数的准确性和迭代求解的时效性是影响潮流计算精度和速度的重要因素。该文提出一种数据驱动的潮流非线性回归及灵敏度解析计算方法,以实现不依赖于电网物理模型的潮流快速计算与分析。首先,利用电网潮流量测数据,构建基于改进的多输出最小二乘支持向量回归(multi-output least-squares support vector regression,MLSSVR)的潮流显式回归模型;其次,通过矩阵快速递归求逆,提出MLSSVR在线学习方法,增强对电网运行场景变化的适应性;最后,对潮流回归模型进行泰勒展开,提出潮流灵敏度解析计算方法。所提方法在多个IEEE标准系统和某实际省级电网进行仿真,验证了所提方法可有效得到高准确度的潮流解及其灵敏度。展开更多
基金supported by the National Natural Science Foundation of China (61074127)
文摘As the solutions of the least squares support vector regression machine (LS-SVRM) are not sparse, it leads to slow prediction speed and limits its applications. The defects of the ex- isting adaptive pruning algorithm for LS-SVRM are that the training speed is slow, and the generalization performance is not satis- factory, especially for large scale problems. Hence an improved algorithm is proposed. In order to accelerate the training speed, the pruned data point and fast leave-one-out error are employed to validate the temporary model obtained after decremental learning. The novel objective function in the termination condition which in- volves the whole constraints generated by all training data points and three pruning strategies are employed to improve the generali- zation performance. The effectiveness of the proposed algorithm is tested on six benchmark datasets. The sparse LS-SVRM model has a faster training speed and better generalization performance.
基金Project(50675186) supported by the National Natural Science Foundation of China
文摘To overcome the disadvantage that the standard least squares support vector regression(LS-SVR) algorithm is not suitable to multiple-input multiple-output(MIMO) system modelling directly,an improved LS-SVR algorithm which was defined as multi-output least squares support vector regression(MLSSVR) was put forward by adding samples' absolute errors in objective function and applied to flatness intelligent control.To solve the poor-precision problem of the control scheme based on effective matrix in flatness control,the predictive control was introduced into the control system and the effective matrix-predictive flatness control method was proposed by combining the merits of the two methods.Simulation experiment was conducted on 900HC reversible cold roll.The performance of effective matrix method and the effective matrix-predictive control method were compared,and the results demonstrate the validity of the effective matrix-predictive control method.
基金supported by the Science and Technology on Space Intelligent Control Laboratory for National Defense(KGJZDSYS-2018-08)。
文摘Least square support vector regression(LSSVR)is a method for function approximation,whose solutions are typically non-sparse,which limits its application especially in some occasions of fast prediction.In this paper,a sparse algorithm for adaptive pruning LSSVR algorithm based on global representative point ranking(GRPR-AP-LSSVR)is proposed.At first,the global representative point ranking(GRPR)algorithm is given,and relevant data analysis experiment is implemented which depicts the importance ranking of data points.Furthermore,the pruning strategy of removing two samples in the decremental learning procedure is designed to accelerate the training speed and ensure the sparsity.The removed data points are utilized to test the temporary learning model which ensures the regression accuracy.Finally,the proposed algorithm is verified on artificial datasets and UCI regression datasets,and experimental results indicate that,compared with several benchmark algorithms,the GRPR-AP-LSSVR algorithm has excellent sparsity and prediction speed without impairing the generalization performance.
基金supported by the National Natural Science Foundation of China(50576033)
文摘The pruning algorithms for sparse least squares support vector regression machine are common methods, and easily com- prehensible, but the computational burden in the training phase is heavy due to the retraining in performing the pruning process, which is not favorable for their applications. To this end, an im- proved scheme is proposed to accelerate sparse least squares support vector regression machine. A major advantage of this new scheme is based on the iterative methodology, which uses the previous training results instead of retraining, and its feasibility is strictly verified theoretically. Finally, experiments on bench- mark data sets corroborate a significant saving of the training time with the same number of support vectors and predictive accuracy compared with the original pruning algorithms, and this speedup scheme is also extended to classification problem.
文摘针对接收信号强度(received signal strength,RSS)的时变性降低WLAN室内定位精度的问题,提出了一种基于核直接判别分析(kernel direct discriminant analysis,KDDA)和混洗蛙跳最小二乘支持向量回归机(SFLA-LSSVR)的定位算法,该算法通过核函数策略将采集的各接入点(access point,AP)的RSS信号映射到非线性领域,有效提取了非线性定位特征,重组定位信息,去除冗余定位特征和噪声;然后采用LSSVR算法构建指纹点定位特征数据与物理位置的映射关系模型,采用SFLA算法优化该关系模型的参数,并用该关系模型对测试点的位置进行回归预测.实验结果表明:提出算法在相同的采样次数下的定位精度明显优于WKNN,ANN,LSSVR算法,并且在相同的定位精度下,采样次数较大减少,是一种性能良好的WLAN室内定位算法.
基金国家自然科学基金资助项目(6147212861173108)+1 种基金National Natural Science Foundation of China(6147212861173108)
文摘针对最小二乘支持向量回归(Least Square Support Vector Regression,LSSVR)建模风电功率时变特性的局限性,提出了一种基于动态集成LSSVR的超短期风电功率预测模型.首先利用风电场监测控制与数据采集(Supervisory Control And Data Acquisition,SCADA)与数值天气预报(Numerical Weather Prediction,NWP)系统的历史数据建立离线单体LSSVR模型库,然后根据预测时段与训练时段NWP序列的相似度从单体LSSVR模型库中动态选择候选集成成员,再后综合考虑正确性与多样性确定集成成员.最后由预测时段与训练时段NWP序列间的相似度分配集成LSSVR成员的权重.通过对湖南省某风电场输出功率进行预测,验证了动态集成LSSVR预测模型的有效性,与持续法、自回归求和移动平均法、单体LSSVR模型、常权重LSSVR组合模型及BPNN动态集成模型相比,动态集成LSSVR模型具有更高的精度,在天气非平稳变化阶段更加明显.
文摘潮流计算及其灵敏度分析是电力系统稳态分析与控制的基础。传统基于模型驱动的潮流计算是在电网拓扑和模型参数完备条件下,通过构建节点功率非线性方程并采用迭代方式进行求解的,灵敏度则由潮流雅可比矩阵求逆获取。模型及参数的准确性和迭代求解的时效性是影响潮流计算精度和速度的重要因素。该文提出一种数据驱动的潮流非线性回归及灵敏度解析计算方法,以实现不依赖于电网物理模型的潮流快速计算与分析。首先,利用电网潮流量测数据,构建基于改进的多输出最小二乘支持向量回归(multi-output least-squares support vector regression,MLSSVR)的潮流显式回归模型;其次,通过矩阵快速递归求逆,提出MLSSVR在线学习方法,增强对电网运行场景变化的适应性;最后,对潮流回归模型进行泰勒展开,提出潮流灵敏度解析计算方法。所提方法在多个IEEE标准系统和某实际省级电网进行仿真,验证了所提方法可有效得到高准确度的潮流解及其灵敏度。