期刊文献+
共找到5,493篇文章
< 1 2 250 >
每页显示 20 50 100
Generalized Predictive Control with Online Least Squares Support Vector Machines 被引量:41
1
作者 LI Li-Juan SU Hong-Ye CHU Jian 《自动化学报》 EI CSCD 北大核心 2007年第11期1182-1188,共7页
这份报纸基于能有效地处理非线性的系统的联机最少的广场支持向量机器(LS-SVM ) 建议一个实际概括预兆的控制(GPC ) 算法。在每个采样时期,算法递归地由增加新数据对并且在实时性质上从考虑删除最不重要的修改模型。删除的数据对被 lag... 这份报纸基于能有效地处理非线性的系统的联机最少的广场支持向量机器(LS-SVM ) 建议一个实际概括预兆的控制(GPC ) 算法。在每个采样时期,算法递归地由增加新数据对并且在实时性质上从考虑删除最不重要的修改模型。删除的数据对被 lagrange 的绝对值从最后一个采样时期更多样地决定。当增加新数据对并且删除存在的时,纸给模型参数的递归的算法分别地,一个大矩阵的倒置被避免,存储器能被算法完全控制。非线性的 LS-SVM 模型在每个采样时期在 GPC 算法被使用。抵销过程的 pH 上的概括预兆的控制的实验显示出建议算法的有效性和实物。 展开更多
关键词 普遍预测控制 支持向量机 联机模型 pH补偿过程 模糊控制
在线阅读 下载PDF
Utilizing partial least square and support vector machine for TBM penetration rate prediction in hard rock conditions 被引量:11
2
作者 高栗 李夕兵 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第1期290-295,共6页
Rate of penetration(ROP) of a tunnel boring machine(TBM) in a rock environment is generally a key parameter for the successful accomplishment of a tunneling project. The objectives of this work are to compare the accu... Rate of penetration(ROP) of a tunnel boring machine(TBM) in a rock environment is generally a key parameter for the successful accomplishment of a tunneling project. The objectives of this work are to compare the accuracy of prediction models employing partial least squares(PLS) regression and support vector machine(SVM) regression technique for modeling the penetration rate of TBM. To develop the proposed models, the database that is composed of intact rock properties including uniaxial compressive strength(UCS), Brazilian tensile strength(BTS), and peak slope index(PSI), and also rock mass properties including distance between planes of weakness(DPW) and the alpha angle(α) are input as dependent variables and the measured ROP is chosen as an independent variable. Two hundred sets of data are collected from Queens Water Tunnel and Karaj-Tehran water transfer tunnel TBM project. The accuracy of the prediction models is measured by the coefficient of determination(R2) and root mean squares error(RMSE) between predicted and observed yield employing 10-fold cross-validation schemes. The R2 and RMSE of prediction are 0.8183 and 0.1807 for SVMR method, and 0.9999 and 0.0011 for PLS method, respectively. Comparison between the values of statistical parameters reveals the superiority of the PLSR model over SVMR one. 展开更多
关键词 tunnel boring machine(TBM) performance prediction rate of penetration(ROP) support vector machine(svm partial least squares(PLS)
在线阅读 下载PDF
Least Squares-support Vector Machine Load Forecasting Approach Optimized by Bacterial Colony Chemotaxis Method 被引量:2
3
作者 ZENG Ming LU Chunquan +1 位作者 TIAN Kuo XUE Song 《中国电机工程学报》 EI CSCD 北大核心 2011年第34期I0009-I0009,共1页
During the Twelfth Five-Year plan,large-scale construction of smart grid with safe and stable operation requires a timely and accurate short-term load forecasting method.Moreover,along with the full-scale smart grid c... During the Twelfth Five-Year plan,large-scale construction of smart grid with safe and stable operation requires a timely and accurate short-term load forecasting method.Moreover,along with the full-scale smart grid construction,the power supply mode and consumption mode of the whole system can be optimized through the accurate short-term load forecasting;and the security,stability and cleanness of the system can be guaranteed. 展开更多
关键词 short-term load forecasting hyper-parameters selection bacterial colony chemotaxis(BCC) least squares support vector machine(LS-svm)
在线阅读 下载PDF
Nonlinear correction of photoelectric displacement sensor based on least square support vector machine 被引量:1
4
作者 郭杰荣 何怡刚 刘长青 《Journal of Central South University》 SCIE EI CAS 2011年第5期1614-1618,共5页
A model of correcting the nonlinear error of photoelectric displacement sensor was established based on the least square support vector machine.The parameters of the correcting nonlinear model,such as penalty factor a... A model of correcting the nonlinear error of photoelectric displacement sensor was established based on the least square support vector machine.The parameters of the correcting nonlinear model,such as penalty factor and kernel parameter,were optimized by chaos genetic algorithm.And the nonlinear correction of photoelectric displacement sensor based on least square support vector machine was applied.The application results reveal that error of photoelectric displacement sensor is less than 1.5%,which is rather satisfactory for nonlinear correction of photoelectric displacement sensor. 展开更多
关键词 least square support vector machine POSITION photoelectric displacement sensor nonlinear correct
在线阅读 下载PDF
Prediction method for surface finishing of spiral bevel gear tooth based on least square support vector machine
5
作者 马宁 徐文骥 +2 位作者 王续跃 魏泽飞 庞桂兵 《Journal of Central South University》 SCIE EI CAS 2011年第3期685-689,共5页
The predictive model of surface roughness of the spiral bevel gear (SBG) tooth based on the least square support vector machine (LSSVM) was proposed.A nonlinear LSSVM model with radial basis function (RBF) kernel was ... The predictive model of surface roughness of the spiral bevel gear (SBG) tooth based on the least square support vector machine (LSSVM) was proposed.A nonlinear LSSVM model with radial basis function (RBF) kernel was presented and then the experimental setup of PECF system was established.The Taguchi method was introduced to assess the effect of finishing parameters on the gear tooth surface roughness,and the training data was also obtained through experiments.The comparison between the predicted values and the experimental values under the same conditions was carried out.The results show that the predicted values are found to be approximately consistent with the experimental values.The mean absolute percent error (MAPE) is 2.43% for the surface roughness and 2.61% for the applied voltage. 展开更多
关键词 pulse electrochemical finishing (PECF) surface roughness least squares support vector machine (LSsvm) PREDICTION
在线阅读 下载PDF
Parameter selection of support vector machine for function approximation based on chaos optimization 被引量:18
6
作者 Yuan Xiaofang Wang Yaonan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第1期191-197,共7页
The support vector machine (SVM) is a novel machine learning method, which has the ability to approximate nonlinear functions with arbitrary accuracy. Setting parameters well is very crucial for SVM learning results... The support vector machine (SVM) is a novel machine learning method, which has the ability to approximate nonlinear functions with arbitrary accuracy. Setting parameters well is very crucial for SVM learning results and generalization ability, and now there is no systematic, general method for parameter selection. In this article, the SVM parameter selection for function approximation is regarded as a compound optimization problem and a mutative scale chaos optimization algorithm is employed to search for optimal paraxneter values. The chaos optimization algorithm is an effective way for global optimal and the mutative scale chaos algorithm could improve the search efficiency and accuracy. Several simulation examples show the sensitivity of the SVM parameters and demonstrate the superiority of this proposed method for nonlinear function approximation. 展开更多
关键词 learning systems support vector machines (svm approximation theory parameter selection optimization.
在线阅读 下载PDF
Decision tree support vector machine based on genetic algorithm for multi-class classification 被引量:17
7
作者 Huanhuan Chen Qiang Wang Yi Shen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第2期322-326,共5页
To solve the multi-class fault diagnosis tasks, decision tree support vector machine (DTSVM), which combines SVM and decision tree using the concept of dichotomy, is proposed. Since the classification performance of... To solve the multi-class fault diagnosis tasks, decision tree support vector machine (DTSVM), which combines SVM and decision tree using the concept of dichotomy, is proposed. Since the classification performance of DTSVM highly depends on its structure, to cluster the multi-classes with maximum distance between the clustering centers of the two sub-classes, genetic algorithm is introduced into the formation of decision tree, so that the most separable classes would be separated at each node of decisions tree. Numerical simulations conducted on three datasets compared with "one-against-all" and "one-against-one" demonstrate the proposed method has better performance and higher generalization ability than the two conventional methods. 展开更多
关键词 support vector machine (svm decision tree GENETICALGORITHM classification.
在线阅读 下载PDF
Support vector machine forecasting method improved by chaotic particle swarm optimization and its application 被引量:11
8
作者 李彦斌 张宁 李存斌 《Journal of Central South University》 SCIE EI CAS 2009年第3期478-481,共4页
By adopting the chaotic searching to improve the global searching performance of the particle swarm optimization (PSO), and using the improved PSO to optimize the key parameters of the support vector machine (SVM) for... By adopting the chaotic searching to improve the global searching performance of the particle swarm optimization (PSO), and using the improved PSO to optimize the key parameters of the support vector machine (SVM) forecasting model, an improved SVM model named CPSO-SVM model was proposed. The new model was applied to predicting the short term load, and the improved effect of the new model was proved. The simulation results of the South China Power Market’s actual data show that the new method can effectively improve the forecast accuracy by 2.23% and 3.87%, respectively, compared with the PSO-SVM and SVM methods. Compared with that of the PSO-SVM and SVM methods, the time cost of the new model is only increased by 3.15 and 4.61 s, respectively, which indicates that the CPSO-SVM model gains significant improved effects. 展开更多
关键词 chaotic searching particle swarm optimization (PSO) support vector machine (svm short term load forecast
在线阅读 下载PDF
Optimization of support vector machine power load forecasting model based on data mining and Lyapunov exponents 被引量:7
9
作者 牛东晓 王永利 马小勇 《Journal of Central South University》 SCIE EI CAS 2010年第2期406-412,共7页
According to the chaotic and non-linear characters of power load data,the time series matrix is established with the theory of phase-space reconstruction,and then Lyapunov exponents with chaotic time series are comput... According to the chaotic and non-linear characters of power load data,the time series matrix is established with the theory of phase-space reconstruction,and then Lyapunov exponents with chaotic time series are computed to determine the time delay and the embedding dimension.Due to different features of the data,data mining algorithm is conducted to classify the data into different groups.Redundant information is eliminated by the advantage of data mining technology,and the historical loads that have highly similar features with the forecasting day are searched by the system.As a result,the training data can be decreased and the computing speed can also be improved when constructing support vector machine(SVM) model.Then,SVM algorithm is used to predict power load with parameters that get in pretreatment.In order to prove the effectiveness of the new model,the calculation with data mining SVM algorithm is compared with that of single SVM and back propagation network.It can be seen that the new DSVM algorithm effectively improves the forecast accuracy by 0.75%,1.10% and 1.73% compared with SVM for two random dimensions of 11-dimension,14-dimension and BP network,respectively.This indicates that the DSVM gains perfect improvement effect in the short-term power load forecasting. 展开更多
关键词 power load forecasting support vector machine (svm Lyapunov exponent data mining embedding dimension feature classification
在线阅读 下载PDF
Improved adaptive pruning algorithm for least squares support vector regression 被引量:4
10
作者 Runpeng Gao Ye San 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第3期438-444,共7页
As the solutions of the least squares support vector regression machine (LS-SVRM) are not sparse, it leads to slow prediction speed and limits its applications. The defects of the ex- isting adaptive pruning algorit... As the solutions of the least squares support vector regression machine (LS-SVRM) are not sparse, it leads to slow prediction speed and limits its applications. The defects of the ex- isting adaptive pruning algorithm for LS-SVRM are that the training speed is slow, and the generalization performance is not satis- factory, especially for large scale problems. Hence an improved algorithm is proposed. In order to accelerate the training speed, the pruned data point and fast leave-one-out error are employed to validate the temporary model obtained after decremental learning. The novel objective function in the termination condition which in- volves the whole constraints generated by all training data points and three pruning strategies are employed to improve the generali- zation performance. The effectiveness of the proposed algorithm is tested on six benchmark datasets. The sparse LS-SVRM model has a faster training speed and better generalization performance. 展开更多
关键词 least squares support vector regression machine (LS- SVRM) PRUNING leave-one-out (LOO) error incremental learning decremental learning.
在线阅读 下载PDF
Incremental support vector machine algorithm based on multi-kernel learning 被引量:7
11
作者 Zhiyu Li Junfeng Zhang Shousong Hu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第4期702-706,共5页
A new incremental support vector machine (SVM) algorithm is proposed which is based on multiple kernel learning. Through introducing multiple kernel learning into the SVM incremental learning, large scale data set l... A new incremental support vector machine (SVM) algorithm is proposed which is based on multiple kernel learning. Through introducing multiple kernel learning into the SVM incremental learning, large scale data set learning problem can be solved effectively. Furthermore, different punishments are adopted in allusion to the training subset and the acquired support vectors, which may help to improve the performance of SVM. Simulation results indicate that the proposed algorithm can not only solve the model selection problem in SVM incremental learning, but also improve the classification or prediction precision. 展开更多
关键词 support vector machine (svm incremental learning multiple kernel learning (MKL).
在线阅读 下载PDF
New family of piecewise smooth support vector machine 被引量:3
12
作者 Qing Wu Leyou Zhang Wan Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第3期618-625,共8页
Support vector machines (SVMs) have been extensively studied and have shown remarkable success in many applications. A new family of twice continuously differentiable piecewise smooth functions are used to smooth th... Support vector machines (SVMs) have been extensively studied and have shown remarkable success in many applications. A new family of twice continuously differentiable piecewise smooth functions are used to smooth the objective function of uncon- strained SVMs. The three-order piecewise smooth support vector machine (TPWSSVMd) is proposed. The piecewise functions can get higher and higher approximation accuracy as required with the increase of parameter d. The global convergence proof of TPWSSVMd is given with the rough set theory. TPWSSVMd can efficiently handle large scale and high dimensional problems. Nu- merical results demonstrate TPWSSVMa has better classification performance and learning efficiency than other competitive base- lines. 展开更多
关键词 support vector machine (svm piecewise smooth function smooth technique bound of convergence.
在线阅读 下载PDF
Probabilistic back analysis for geotechnical engineering based on Bayesian and support vector machine 被引量:2
13
作者 陈炳瑞 赵洪波 +1 位作者 茹忠亮 李贤 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第12期4778-4786,共9页
Geomechanical parameters are complex and uncertain.In order to take this complexity and uncertainty into account,a probabilistic back-analysis method combining the Bayesian probability with the least squares support v... Geomechanical parameters are complex and uncertain.In order to take this complexity and uncertainty into account,a probabilistic back-analysis method combining the Bayesian probability with the least squares support vector machine(LS-SVM) technique was proposed.The Bayesian probability was used to deal with the uncertainties in the geomechanical parameters,and an LS-SVM was utilized to establish the relationship between the displacement and the geomechanical parameters.The proposed approach was applied to the geomechanical parameter identification in a slope stability case study which was related to the permanent ship lock within the Three Gorges project in China.The results indicate that the proposed method presents the uncertainties in the geomechanical parameters reasonably well,and also improves the understanding that the monitored information is important in real projects. 展开更多
关键词 geotechnical engineering back analysis UNCERTAINTY Bayesian theory least square method support vector machine(svm)
在线阅读 下载PDF
Huberized Multiclass Support Vector Machine for Microarray Classification 被引量:7
14
作者 LI Jun-Tao JIA Ying-Min 《自动化学报》 EI CSCD 北大核心 2010年第3期399-405,共7页
关键词 基因 支持向量机 计算方法 路径系数
在线阅读 下载PDF
Adaptive support vector machine decision feedback equalizer
15
作者 Sumin Zhang Shu Li Donglin Su 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第3期452-461,共10页
An adaptive support vector machine decision feedback equalizer(ASVM-DFE) based on the least square support vector machine(LS-SVM) is proposed,it solves linear system iteratively with less computational intensity.A... An adaptive support vector machine decision feedback equalizer(ASVM-DFE) based on the least square support vector machine(LS-SVM) is proposed,it solves linear system iteratively with less computational intensity.An adaptive non-singleton fuzzy support vector machine decision feedback equalizer(ANSFSVMDFE) is also presented,it adopts the non-singleton fuzzy Gaussian kernel function with similar characteristic of pre-filter and is modified with a space transformation based approach.Simulations under nonlinear time variant channels show that ASVM-DFE and ANSFSVM-DFE perform very well on nonlinear equalization and ANSFSVM-DFE acts especially well in resisting abrupt interference. 展开更多
关键词 non-singleton fuzzy system support vector machine(svm EQUALIZER decision feedback.
在线阅读 下载PDF
Improved scheme to accelerate sparse least squares support vector regression
16
作者 Yongping Zhao Jianguo Sun 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第2期312-317,共6页
The pruning algorithms for sparse least squares support vector regression machine are common methods, and easily com- prehensible, but the computational burden in the training phase is heavy due to the retraining in p... The pruning algorithms for sparse least squares support vector regression machine are common methods, and easily com- prehensible, but the computational burden in the training phase is heavy due to the retraining in performing the pruning process, which is not favorable for their applications. To this end, an im- proved scheme is proposed to accelerate sparse least squares support vector regression machine. A major advantage of this new scheme is based on the iterative methodology, which uses the previous training results instead of retraining, and its feasibility is strictly verified theoretically. Finally, experiments on bench- mark data sets corroborate a significant saving of the training time with the same number of support vectors and predictive accuracy compared with the original pruning algorithms, and this speedup scheme is also extended to classification problem. 展开更多
关键词 least squares support vector regression machine pruning algorithm iterative methodology classification.
在线阅读 下载PDF
基于SARIMA-SVM模型的季节性PM_(2.5)浓度预测 被引量:1
17
作者 宋英华 徐亚安 张远进 《计算机工程》 北大核心 2025年第1期51-59,共9页
空气污染是城市环境治理的主要问题之一,而PM_(2.5)是影响空气质量的重要因素。针对传统时间序列预测模型对PM_(2.5)浓度预测缺少季节性因素分析,预测精度不够高的问题,提出一种基于机器学习的季节性差分自回归滑动平均-支持向量机(SARI... 空气污染是城市环境治理的主要问题之一,而PM_(2.5)是影响空气质量的重要因素。针对传统时间序列预测模型对PM_(2.5)浓度预测缺少季节性因素分析,预测精度不够高的问题,提出一种基于机器学习的季节性差分自回归滑动平均-支持向量机(SARIMA-SVM)融合模型。该融合模型为串联型融合模型,将数据拆分为线性部分与非线性部分。SARIMA模型在差分自回归滑动平均(ARIMA)模型的基础上增加了季节性因素提取参数,能有效分析PM_(2.5)浓度数据的季节性规律变化趋势,较好地预测数据未来的线性变化趋势。结合SVM模型对预测数据的残差序列进行优化,利用滑动步长预测法确定残差序列的最优预测步长,通过网格搜索确定最优模型参数,实现对PM_(2.5)浓度数据的长期预测,同时提高整体预测精度。通过对武汉市近5年的PM_(2.5)浓度监测数据进行分析,结果表明该融合模型的预测准确率相较于单一模型有很大提升,在相同的实验环境下比单一的ARIMA、Auto ARIMA、SARIMA模型分别提升了99%、99%、98%,稳定性也更好,为PM_(2.5)浓度预测研究提供了新的思路。 展开更多
关键词 季节性差分自回归滑动平均 支持向量机 融合模型 PM_(2.5)浓度 季节性预测
在线阅读 下载PDF
多策略改进COA算法优化LSSVM的变压器故障诊断研究 被引量:2
18
作者 李斌 白翔旭 《电工电能新技术》 北大核心 2025年第4期112-119,共8页
为解决变压器故障诊断准确率低的问题,本文提出一种多策略改进浣熊优化算法(ICOA)与最小二乘支持向量机(LSSVM)相结合的变压器故障诊断方法。首先,通过核主成分分析(KPCA)将变压器故障数据集进行特征提取,降低故障数据维度;其次,应用混... 为解决变压器故障诊断准确率低的问题,本文提出一种多策略改进浣熊优化算法(ICOA)与最小二乘支持向量机(LSSVM)相结合的变压器故障诊断方法。首先,通过核主成分分析(KPCA)将变压器故障数据集进行特征提取,降低故障数据维度;其次,应用混沌映射、透镜反向学习、Levy飞行等策略对浣熊优化算法(COA)进行优化,提高全局寻优能力;然后,应用ICOA算法进行LSSVM参数寻优,构建ICOA-LSSVM故障诊断模型;最后,将特征提取后的数据导入ICOA-LSSVM中并与其他模型对比。实验结果表明所提方法准确率为96.19%,相比其他诊断模型具有更高的故障诊断精度。 展开更多
关键词 变压器故障诊断 浣熊优化算法 核主成分分析 最小二乘支持向量机
在线阅读 下载PDF
基于RTSWMFE,IS-GSE与COOT-SVM的行星齿轮箱故障诊断 被引量:1
19
作者 戚晓利 杨艳 +1 位作者 崔创创 程主梓 《振动.测试与诊断》 北大核心 2025年第1期132-139,205,共9页
针对行星齿轮箱特征提取困难的问题,提出一种基于精细时移加权多尺度模糊熵(refined time⁃shift weighted multiscale fuzzy entropy,简称RTSWMFE)、改进监督型几何和统计保持流形嵌入(improved supervised geometry and statistics⁃pre... 针对行星齿轮箱特征提取困难的问题,提出一种基于精细时移加权多尺度模糊熵(refined time⁃shift weighted multiscale fuzzy entropy,简称RTSWMFE)、改进监督型几何和统计保持流形嵌入(improved supervised geometry and statistics⁃preserving manifold embedding,简称IS⁃GSE)和白骨顶优化算法支持向量机(coot optimization algorithm support vector machine,简称COOT⁃SVM)的行星齿轮箱故障诊断方法。首先,利用RTSWMFE提取高维故障特征信息;其次,采用IS⁃GSE对高维特征进行降维,提取出敏感、低维的特征;最后,将低维特征输入COOT⁃SVM中进行识别分类。行星齿轮箱故障诊断实验结果表明:IS⁃GSE方法采用余弦相似度与欧式距离相结合的距离度量方式,并融入监督学习思想,降维效果较佳;COOT⁃SVM方法对经RTSWMFE和IS⁃GSE二次提取的故障特征识别精度达到100%。 展开更多
关键词 故障诊断 行星齿轮箱 精细时移加权多尺度模糊熵 改进监督型几何和统计保持流形嵌入 白骨顶优化算法优化支持向量机
在线阅读 下载PDF
基于改进U-Net和IWOA-LSSVM的番茄综合品质检测方法研究
20
作者 施利春 边可可 +1 位作者 王松伟 王治忠 《食品与机械》 北大核心 2025年第8期109-117,共9页
[目的]提高食品生产中番茄无损检测方法的检测精度和效率。[方法]基于番茄自动化分拣系统,提出一种融合机器视觉、多尺度残差注意力U-Net模型、改进鲸鱼优化算法和最小二乘支持向量机的番茄综合品质检测方法。通过机器视觉采集番茄图像... [目的]提高食品生产中番茄无损检测方法的检测精度和效率。[方法]基于番茄自动化分拣系统,提出一种融合机器视觉、多尺度残差注意力U-Net模型、改进鲸鱼优化算法和最小二乘支持向量机的番茄综合品质检测方法。通过机器视觉采集番茄图像信息;通过多尺度残差注意力U-Net模型对番茄图像进行分割,完成番茄果径参数测量;通过混沌映射和自适应收敛因子优化的鲸鱼优化算法对最小二乘支持向量机模型参数进行寻优,完成番茄硬度和番茄红素含量检测,并进行验证试验。[结果]试验方法可以实现番茄综合品质的准确、快速和无损检测。在番茄果径、硬度和番茄红素检测中均取得了较优的决定系数、均方根误差和平均检测时间,决定系数>0.960 0,均方根误差<0.012 5,平均检测时间<0.032 s。[结论]结合机器视觉、深度学习和智能算法可以实现番茄综合品质的准确、快速和无损检测。 展开更多
关键词 番茄 综合品质 无损检测 机器视觉 U-Net模型 鲸鱼优化算法 最小二乘支持向量机
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部