An S-N curve fitting approach is proposed based on the weighted least square method, and the weights are inversely proportional to the length of mean confidence intervals of experimental data sets. The assumption coin...An S-N curve fitting approach is proposed based on the weighted least square method, and the weights are inversely proportional to the length of mean confidence intervals of experimental data sets. The assumption coincides with the physical characteristics of the fatigue life scatter. Two examples demonstrate the method. It is shown that the method has better accuracy and reasonableness compared with the usual least square method.展开更多
Boreal forests play an important role in global environment systems. Understanding boreal forest ecosystem structure and function requires accurate monitoring and estimating of forest canopy and biomass. We used parti...Boreal forests play an important role in global environment systems. Understanding boreal forest ecosystem structure and function requires accurate monitoring and estimating of forest canopy and biomass. We used partial least square regression (PLSR) models to relate forest parameters, i.e. canopy closure density and above ground tree biomass, to Landsat ETM+ data. The established models were optimized according to the variable importance for projection (VIP) criterion and the bootstrap method, and their performance was compared using several statistical indices. All variables selected by the VIP criterion passed the bootstrap test (p〈0.05). The simplified models without insignificant variables (VIP 〈1) performed as well as the full model but with less computation time. The relative root mean square error (RMSE%) was 29% for canopy closure density, and 58% for above ground tree biomass. We conclude that PLSR can be an effective method for estimating canopy closure density and above ground biomass.展开更多
With the east section of the Changji sag Zhunger Basin as a case study, both a principal curvature method and a moving least square method are elaborated. The moving least square method is introduced, for the first ti...With the east section of the Changji sag Zhunger Basin as a case study, both a principal curvature method and a moving least square method are elaborated. The moving least square method is introduced, for the first time, to fit a stratum surface. The results show that, using the same-degree base function, compared with a traditional least square method, the moving least square method can produce lower fitting errors, the fitting surface can describe the morphological characteristics of stratum surfaces more accurately and the principal curvature values vary within a wide range and may be more suitable for the prediction of the distribution of structural fractures. The moving least square method could be useful in curved surface fitting and stratum curvature analysis.展开更多
The purpose of this article is to develop and analyze least-squares approximations for the incompressible magnetohydrodynamic equations. The major advantage of the least-squares finite element method is that it is not...The purpose of this article is to develop and analyze least-squares approximations for the incompressible magnetohydrodynamic equations. The major advantage of the least-squares finite element method is that it is not subjected to the so-called Ladyzhenskaya-Babuska-Brezzi (LBB) condition. The authors employ least-squares functionals which involve a discrete inner product which is related to the inner product in H^-1(Ω).展开更多
Based on the concept of multiplicative fuzzy consistent complementary judgement matrix, the mixed least square method (MLSM) for priority of complementary judgement matrix is proposed and proved. Then, the correspon...Based on the concept of multiplicative fuzzy consistent complementary judgement matrix, the mixed least square method (MLSM) for priority of complementary judgement matrix is proposed and proved. Then, the corresponding convergent iterative algorithm is given and its convergence is proved. Finally, some main properties of the developed priority method, such as rank preservation under strong condition, etc., ate introduced. The theoretical analyses show that the MLSM can sufficiently reflect the preference information of the decision maker, and is easy to realize on a computer.展开更多
To estimate the life of vacuum fluorescent display (VFD) more accurately and reduce test time and cost, four constant stress accelerated life tests (CSALTs) were conducted on an accelerated life test model. In the...To estimate the life of vacuum fluorescent display (VFD) more accurately and reduce test time and cost, four constant stress accelerated life tests (CSALTs) were conducted on an accelerated life test model. In the model, statistical analysis of test data is achieved by applying lognormal function to describe the life distribution, and least square method (LSM) to calculate the mean value and the standard deviation of logarithm. As a result, the accelerated life equation was obtained, and then a self-developed software was developed to predict the VFD life. The data analysis results demonstrate that the VFD life submits to lognormal distribution, that the accelerated model meets the linear Arrhenius equation, and that the precise accelerated parameter makes it possible to acquire the life information of VFD within one month.展开更多
This article is devoted to establishing a least square based weak Galerkin method for second order elliptic equations in non-divergence form using a discrete weak Hessian operator.Naturally,the resulting linear system...This article is devoted to establishing a least square based weak Galerkin method for second order elliptic equations in non-divergence form using a discrete weak Hessian operator.Naturally,the resulting linear system is symmetric and positive definite,and thus the algorithm is easy to implement and analyze.Convergence analysis in the H2 equivalent norm is established on an arbitrary shape regular polygonal mesh.A superconvergence result is proved when the coefficient matrix is constant or piecewise constant.Numerical examples are performed which not only verify the theoretical results but also reveal some unexpected superconvergence phenomena.展开更多
Many science and engineering applications involve solvinga linear least-squares system formed from some field measurements. In the distributed cyber-physical systems(CPS),each sensor node used for measurement often on...Many science and engineering applications involve solvinga linear least-squares system formed from some field measurements. In the distributed cyber-physical systems(CPS),each sensor node used for measurement often only knowspartial independent rows of the least-squares system. To solve the least-squares all the measurements must be gathered at a centralized location and then perform the computa-tion. Such data collection and computation are inefficient because of bandwidth and time constraints and sometimes areinfeasible because of data privacy concerns. Iterative methods are natural candidates for solving the aforementionedproblem and there are many studies regarding this. However,most of the proposed solutions are related to centralized/parallel computations while only a few have the potential to beapplied in distributed networks. Thus distributed computations are strongly preferred or demanded in many of the realworld applications, e.g. smart-grid, target tracking, etc. Thispaper surveys the representative iterative methods for distributed least-squares in networks.展开更多
A method of modifying the architecture of fractional least mean square (FLMS) algorithm is presented to work with nonlinear time series prediction. Here we incorporate an adjustable gain parameter in the weight adap...A method of modifying the architecture of fractional least mean square (FLMS) algorithm is presented to work with nonlinear time series prediction. Here we incorporate an adjustable gain parameter in the weight adaptation equation of the original FLMS algorithm and absorb the gamma function in the fractional step size parameter. This approach provides an interesting achievement in the performance of the filter in terms of handling the nonlinear problems with less computational burden by avoiding the evaluation of complex gamma function. We call this new algorithm as the modified fractional least mean square (MFLMS) algorithm. The predictive performance for the nonlinear Mackey glass chaotic time series is observed and evaluated using the classical LMS, FLMS, kernel LMS, and proposed MFLMS adaptive filters. The simulation results for the time series with and without noise confirm the superiority and improvement in the prediction capability of the proposed MFLMS predictor over its counterparts.展开更多
We study the problem of parameter estimation for mean-reverting α-stable motion, dXt = (a0 - θ0Xt)dt + dZt, observed at discrete time instants. A least squares estimator is obtained and its asymptotics is discuss...We study the problem of parameter estimation for mean-reverting α-stable motion, dXt = (a0 - θ0Xt)dt + dZt, observed at discrete time instants. A least squares estimator is obtained and its asymptotics is discussed in the singular case (a0, θ0) = (0, 0). If a0 = 0, then the mean-reverting α-stable motion becomes Ornstein-Uhlenbeck process and is studied in [7] in the ergodic case θ0 〉 0. For the Ornstein-Uhlenbeck process, asymptotics of the least squares estimators for the singular case (θ0 = 0) and for ergodic case (θ0 〉 0) are completely different.展开更多
Based on the moving least square (MLS) approximations and the boundary integral equations (BIEs), a meshless algorithm is presented in this paper for elliptic Signorini problems. In the algorithm, a projection ope...Based on the moving least square (MLS) approximations and the boundary integral equations (BIEs), a meshless algorithm is presented in this paper for elliptic Signorini problems. In the algorithm, a projection operator is used to tackle the nonlinear boundary inequality conditions. The Signorini problem is then reformulated as BIEs and the unknown boundary variables are approximated by the MLS approximations. Accordingly, only a nodal data structure on the boundary of a domain is required. The convergence of the algorithm is proven. Numerical examples are given to show the high convergence rate and high computational efficiency of the presented algorithm.展开更多
Kalman filter is commonly used in data filtering and parameters estimation of nonlinear system,such as projectile's trajectory estimation and control.While there is a drawback that the prior error covariance matri...Kalman filter is commonly used in data filtering and parameters estimation of nonlinear system,such as projectile's trajectory estimation and control.While there is a drawback that the prior error covariance matrix and filter parameters are difficult to be determined,which may result in filtering divergence.As to the problem that the accuracy of state estimation for nonlinear ballistic model strongly depends on its mathematical model,we improve the weighted least squares method(WLSM)with minimum model error principle.Invariant embedding method is adopted to solve the cost function including the model error.With the knowledge of measurement data and measurement error covariance matrix,we use gradient descent algorithm to determine the weighting matrix of model error.The uncertainty and linearization error of model are recursively estimated by the proposed method,thus achieving an online filtering estimation of the observations.Simulation results indicate that the proposed recursive estimation algorithm is insensitive to initial conditions and of good robustness.展开更多
For the accurate extraction of cavity decay time, a selection of data points is supplemented to the weighted least square method. We derive the expected precision, accuracy and computation cost of this improved method...For the accurate extraction of cavity decay time, a selection of data points is supplemented to the weighted least square method. We derive the expected precision, accuracy and computation cost of this improved method, and examine these performances by simulation. By comparing this method with the nonlinear least square fitting (NLSF) method and the linear regression of the sum (LRS) method in derivations and simulations, we find that this method can achieve the same or even better precision, comparable accuracy, and lower computation cost. We test this method by experimental decay signals. The results are in agreement with the ones obtained from the nonlinear least square fitting method.展开更多
An M-metric least square method for polynomial analogy is presented. The relative normal eqUation is of diagonal form, such that the concise solution formula is explicit, and it is suitable to Parallel computation. On...An M-metric least square method for polynomial analogy is presented. The relative normal eqUation is of diagonal form, such that the concise solution formula is explicit, and it is suitable to Parallel computation. On the other hand, by error analysis of a typical example, we can see that the presented method is reliable.展开更多
The full-spectrum least-squares(FSLS) method is introduced to perform quantitative energy-dispersive X-ray fluorescence analysis for unknown solid samples.Based on the conventional least-squares principle, this spectr...The full-spectrum least-squares(FSLS) method is introduced to perform quantitative energy-dispersive X-ray fluorescence analysis for unknown solid samples.Based on the conventional least-squares principle, this spectrum evaluation method is able to obtain the background-corrected and interference-free net peaks, which is significant for quantization analyses. A variety of analytical parameters and functions to describe the features of the fluorescence spectra of pure elements are used and established, such as the mass absorption coefficient, the Gi factor, and fundamental fluorescence formulas. The FSLS iterative program was compiled in the C language. The content of each component should reach the convergence criterion at the end of the calculations. After a basic theory analysis and experimental preparation, 13 national standard soil samples were detected using a spectrometer to test the feasibility of using the algorithm. The results show that the calculated contents of Ti, Fe, Ni, Cu, and Zn have the same changing tendency as the corresponding standard content in the 13 reference samples. Accuracies of 0.35% and 14.03% are obtained, respectively, for Fe and Ti, whose standard concentrations are 8.82% and 0.578%, respectively. However, the calculated results of trace elements (only tens of lg/g) deviate from the standard values. This may be because of measurement accuracy and mutual effects between the elements.展开更多
The solution of normal least squares support vector regression(LSSVR)is lack of sparseness,which limits the real-time and hampers the wide applications to a certain degree.To overcome this obstacle,a scheme,named I2FS...The solution of normal least squares support vector regression(LSSVR)is lack of sparseness,which limits the real-time and hampers the wide applications to a certain degree.To overcome this obstacle,a scheme,named I2FSA-LSSVR,is proposed.Compared with the previously approximate algorithms,it not only adopts the partial reduction strategy but considers the influence between the previously selected support vectors and the willselected support vector during the process of computing the supporting weights.As a result,I2FSA-LSSVR reduces the number of support vectors and enhances the real-time.To confirm the feasibility and effectiveness of the proposed algorithm,experiments on benchmark data sets are conducted,whose results support the presented I2FSA-LSSVR.展开更多
Using the inversion of the auto correlation function Toeplitz matrix of pseudo random binary sequence (PRBS) derived in this paper and the theorem of partitioned matrix inversion, a fast multistage least squares (FM...Using the inversion of the auto correlation function Toeplitz matrix of pseudo random binary sequence (PRBS) derived in this paper and the theorem of partitioned matrix inversion, a fast multistage least squares (FMLS) method is developed. Its performances are theoretically analyzed and digital simulation is made to compare FMLS with multistage least squares (MSLS), correlation least squares(COR LS) and LS for their computer speed and identification accuracy. Finally, FMLS is applied to identifying the heat excharger dynamics. It is shown that FMLS is a good and effective identification technique.展开更多
In this paper we have made a numerical study on the control of vortex shedding and drag reduction of a cylinder by attaching thin splitter plates. The wake structure of the cylinder of square cross-section with attach...In this paper we have made a numerical study on the control of vortex shedding and drag reduction of a cylinder by attaching thin splitter plates. The wake structure of the cylinder of square cross-section with attached splitter plates is analyzed for a range of Reynolds number, based on the incident stream and height of the cylinder, in the laminar range. The Navier-Stokes equations governing the flow are solved by the control volume method over a staggered grid arrangement. We have used the semi-implicit method for pressure-linked equation (SIMPLE) algorithm for computation. Our results show that the presence of a splitter plate upstream of the cylinder reduces the drag, but it has a small impact on the vortex shedding frequency when the plate length is beyond 1.5 time the height of the cylinder. The presence of a downstream splitter plate dampens the vortex shedding frequency. The entrainment of fluid into the inner side of the separated shear layers is obstructed by the downstream splitter plate. Our results suggest that by attaching in-line splitter plates both upstream and downstream of the cylinder, the vortex shedding can be suppressed, as well as a reduction in drag be obtained. We made a parametric study to determine the optimal length of these splitter plates so as to achieve low drag and low vortex shedding frequency.展开更多
文摘An S-N curve fitting approach is proposed based on the weighted least square method, and the weights are inversely proportional to the length of mean confidence intervals of experimental data sets. The assumption coincides with the physical characteristics of the fatigue life scatter. Two examples demonstrate the method. It is shown that the method has better accuracy and reasonableness compared with the usual least square method.
基金supported by the 948 Program of the State Forestry Administration (2009-4-43)the National Natura Science Foundation of China (No.30870420)
文摘Boreal forests play an important role in global environment systems. Understanding boreal forest ecosystem structure and function requires accurate monitoring and estimating of forest canopy and biomass. We used partial least square regression (PLSR) models to relate forest parameters, i.e. canopy closure density and above ground tree biomass, to Landsat ETM+ data. The established models were optimized according to the variable importance for projection (VIP) criterion and the bootstrap method, and their performance was compared using several statistical indices. All variables selected by the VIP criterion passed the bootstrap test (p〈0.05). The simplified models without insignificant variables (VIP 〈1) performed as well as the full model but with less computation time. The relative root mean square error (RMSE%) was 29% for canopy closure density, and 58% for above ground tree biomass. We conclude that PLSR can be an effective method for estimating canopy closure density and above ground biomass.
基金Projects 2007CB209405 and 2002CB412702 supported by the National Basic Research Program of ChinaKZCX2-YW-113 by the Important Directive Item of the Knowledge Innovation Project of Chinese Academy of Sciences 40772100 by the National Natural Science Foundation of China
文摘With the east section of the Changji sag Zhunger Basin as a case study, both a principal curvature method and a moving least square method are elaborated. The moving least square method is introduced, for the first time, to fit a stratum surface. The results show that, using the same-degree base function, compared with a traditional least square method, the moving least square method can produce lower fitting errors, the fitting surface can describe the morphological characteristics of stratum surfaces more accurately and the principal curvature values vary within a wide range and may be more suitable for the prediction of the distribution of structural fractures. The moving least square method could be useful in curved surface fitting and stratum curvature analysis.
基金supported by the National Basic Research Program of China (2005CB321701)NSF of mathematics research special fund of Hebei Province(08M005)
文摘The purpose of this article is to develop and analyze least-squares approximations for the incompressible magnetohydrodynamic equations. The major advantage of the least-squares finite element method is that it is not subjected to the so-called Ladyzhenskaya-Babuska-Brezzi (LBB) condition. The authors employ least-squares functionals which involve a discrete inner product which is related to the inner product in H^-1(Ω).
基金The Project of Shaanxi Provincial Natural Science Foundation of China (No.2004A05)the Project of Science and Research Foundation of Education Committee of Shaanxi Province (No.06JK324)
文摘Based on the concept of multiplicative fuzzy consistent complementary judgement matrix, the mixed least square method (MLSM) for priority of complementary judgement matrix is proposed and proved. Then, the corresponding convergent iterative algorithm is given and its convergence is proved. Finally, some main properties of the developed priority method, such as rank preservation under strong condition, etc., ate introduced. The theoretical analyses show that the MLSM can sufficiently reflect the preference information of the decision maker, and is easy to realize on a computer.
基金Shanghai Municipal Natural Science Foun-dation (NO.09ZR1413000)Undergraduate Education High-land Construction Project of ShanghaiKey Technology R&D Program of Shanghai Municipality (No.08160510600)
文摘To estimate the life of vacuum fluorescent display (VFD) more accurately and reduce test time and cost, four constant stress accelerated life tests (CSALTs) were conducted on an accelerated life test model. In the model, statistical analysis of test data is achieved by applying lognormal function to describe the life distribution, and least square method (LSM) to calculate the mean value and the standard deviation of logarithm. As a result, the accelerated life equation was obtained, and then a self-developed software was developed to predict the VFD life. The data analysis results demonstrate that the VFD life submits to lognormal distribution, that the accelerated model meets the linear Arrhenius equation, and that the precise accelerated parameter makes it possible to acquire the life information of VFD within one month.
基金supported by Zhejiang Provincial Natural Science Foundation of China(LY19A010008).
文摘This article is devoted to establishing a least square based weak Galerkin method for second order elliptic equations in non-divergence form using a discrete weak Hessian operator.Naturally,the resulting linear system is symmetric and positive definite,and thus the algorithm is easy to implement and analyze.Convergence analysis in the H2 equivalent norm is established on an arbitrary shape regular polygonal mesh.A superconvergence result is proved when the coefficient matrix is constant or piecewise constant.Numerical examples are performed which not only verify the theoretical results but also reveal some unexpected superconvergence phenomena.
基金partially supported by US NSF under Grant No.NSF-CNS-1066391and No.NSF-CNS-0914371,NSF-CPS-1135814 and NSF-CDI-1125165
文摘Many science and engineering applications involve solvinga linear least-squares system formed from some field measurements. In the distributed cyber-physical systems(CPS),each sensor node used for measurement often only knowspartial independent rows of the least-squares system. To solve the least-squares all the measurements must be gathered at a centralized location and then perform the computa-tion. Such data collection and computation are inefficient because of bandwidth and time constraints and sometimes areinfeasible because of data privacy concerns. Iterative methods are natural candidates for solving the aforementionedproblem and there are many studies regarding this. However,most of the proposed solutions are related to centralized/parallel computations while only a few have the potential to beapplied in distributed networks. Thus distributed computations are strongly preferred or demanded in many of the realworld applications, e.g. smart-grid, target tracking, etc. Thispaper surveys the representative iterative methods for distributed least-squares in networks.
基金Project supported by the Higher Education Commission of Pakistan
文摘A method of modifying the architecture of fractional least mean square (FLMS) algorithm is presented to work with nonlinear time series prediction. Here we incorporate an adjustable gain parameter in the weight adaptation equation of the original FLMS algorithm and absorb the gamma function in the fractional step size parameter. This approach provides an interesting achievement in the performance of the filter in terms of handling the nonlinear problems with less computational burden by avoiding the evaluation of complex gamma function. We call this new algorithm as the modified fractional least mean square (MFLMS) algorithm. The predictive performance for the nonlinear Mackey glass chaotic time series is observed and evaluated using the classical LMS, FLMS, kernel LMS, and proposed MFLMS adaptive filters. The simulation results for the time series with and without noise confirm the superiority and improvement in the prediction capability of the proposed MFLMS predictor over its counterparts.
基金Hu is supported by the National Science Foundation under Grant No.DMS0504783Long is supported by FAU Start-up funding at the C. E. Schmidt College of Science
文摘We study the problem of parameter estimation for mean-reverting α-stable motion, dXt = (a0 - θ0Xt)dt + dZt, observed at discrete time instants. A least squares estimator is obtained and its asymptotics is discussed in the singular case (a0, θ0) = (0, 0). If a0 = 0, then the mean-reverting α-stable motion becomes Ornstein-Uhlenbeck process and is studied in [7] in the ergodic case θ0 〉 0. For the Ornstein-Uhlenbeck process, asymptotics of the least squares estimators for the singular case (θ0 = 0) and for ergodic case (θ0 〉 0) are completely different.
基金supported by the National Natural Science Foundation of China(Grant No.11101454)the Natural Science Foundation of Chongqing CSTC,China(Grant No.cstc2014jcyjA00005)the Program of Innovation Team Project in University of Chongqing City,China(Grant No.KJTD201308)
文摘Based on the moving least square (MLS) approximations and the boundary integral equations (BIEs), a meshless algorithm is presented in this paper for elliptic Signorini problems. In the algorithm, a projection operator is used to tackle the nonlinear boundary inequality conditions. The Signorini problem is then reformulated as BIEs and the unknown boundary variables are approximated by the MLS approximations. Accordingly, only a nodal data structure on the boundary of a domain is required. The convergence of the algorithm is proven. Numerical examples are given to show the high convergence rate and high computational efficiency of the presented algorithm.
基金This work is supported by Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX18_0467)Jiangsu Province,China.During the revision of this paper,the author is supported by China Scholarship Council(No.201906840021)China to continue some research related to data processing.
文摘Kalman filter is commonly used in data filtering and parameters estimation of nonlinear system,such as projectile's trajectory estimation and control.While there is a drawback that the prior error covariance matrix and filter parameters are difficult to be determined,which may result in filtering divergence.As to the problem that the accuracy of state estimation for nonlinear ballistic model strongly depends on its mathematical model,we improve the weighted least squares method(WLSM)with minimum model error principle.Invariant embedding method is adopted to solve the cost function including the model error.With the knowledge of measurement data and measurement error covariance matrix,we use gradient descent algorithm to determine the weighting matrix of model error.The uncertainty and linearization error of model are recursively estimated by the proposed method,thus achieving an online filtering estimation of the observations.Simulation results indicate that the proposed recursive estimation algorithm is insensitive to initial conditions and of good robustness.
基金supported by the Preeminent Youth Fund of Sichuan Province,China(Grant No.2012JQ0012)the National Natural Science Foundation of China(Grant Nos.11173008,10974202,and 60978049)the National Key Scientific and Research Equipment Development Project of China(Grant No.ZDYZ2013-2)
文摘For the accurate extraction of cavity decay time, a selection of data points is supplemented to the weighted least square method. We derive the expected precision, accuracy and computation cost of this improved method, and examine these performances by simulation. By comparing this method with the nonlinear least square fitting (NLSF) method and the linear regression of the sum (LRS) method in derivations and simulations, we find that this method can achieve the same or even better precision, comparable accuracy, and lower computation cost. We test this method by experimental decay signals. The results are in agreement with the ones obtained from the nonlinear least square fitting method.
文摘An M-metric least square method for polynomial analogy is presented. The relative normal eqUation is of diagonal form, such that the concise solution formula is explicit, and it is suitable to Parallel computation. On the other hand, by error analysis of a typical example, we can see that the presented method is reliable.
基金supported by the National Key R&D Project of China(No.2017YFC0602100)the National Natural Science Foundation of China(No.41774147)Sichuan Science and Technology Support Program(No.2015GZ0272)
文摘The full-spectrum least-squares(FSLS) method is introduced to perform quantitative energy-dispersive X-ray fluorescence analysis for unknown solid samples.Based on the conventional least-squares principle, this spectrum evaluation method is able to obtain the background-corrected and interference-free net peaks, which is significant for quantization analyses. A variety of analytical parameters and functions to describe the features of the fluorescence spectra of pure elements are used and established, such as the mass absorption coefficient, the Gi factor, and fundamental fluorescence formulas. The FSLS iterative program was compiled in the C language. The content of each component should reach the convergence criterion at the end of the calculations. After a basic theory analysis and experimental preparation, 13 national standard soil samples were detected using a spectrometer to test the feasibility of using the algorithm. The results show that the calculated contents of Ti, Fe, Ni, Cu, and Zn have the same changing tendency as the corresponding standard content in the 13 reference samples. Accuracies of 0.35% and 14.03% are obtained, respectively, for Fe and Ti, whose standard concentrations are 8.82% and 0.578%, respectively. However, the calculated results of trace elements (only tens of lg/g) deviate from the standard values. This may be because of measurement accuracy and mutual effects between the elements.
基金Supported by the National Natural Science Foundation of China(51006052)
文摘The solution of normal least squares support vector regression(LSSVR)is lack of sparseness,which limits the real-time and hampers the wide applications to a certain degree.To overcome this obstacle,a scheme,named I2FSA-LSSVR,is proposed.Compared with the previously approximate algorithms,it not only adopts the partial reduction strategy but considers the influence between the previously selected support vectors and the willselected support vector during the process of computing the supporting weights.As a result,I2FSA-LSSVR reduces the number of support vectors and enhances the real-time.To confirm the feasibility and effectiveness of the proposed algorithm,experiments on benchmark data sets are conducted,whose results support the presented I2FSA-LSSVR.
文摘Using the inversion of the auto correlation function Toeplitz matrix of pseudo random binary sequence (PRBS) derived in this paper and the theorem of partitioned matrix inversion, a fast multistage least squares (FMLS) method is developed. Its performances are theoretically analyzed and digital simulation is made to compare FMLS with multistage least squares (MSLS), correlation least squares(COR LS) and LS for their computer speed and identification accuracy. Finally, FMLS is applied to identifying the heat excharger dynamics. It is shown that FMLS is a good and effective identification technique.
文摘In this paper we have made a numerical study on the control of vortex shedding and drag reduction of a cylinder by attaching thin splitter plates. The wake structure of the cylinder of square cross-section with attached splitter plates is analyzed for a range of Reynolds number, based on the incident stream and height of the cylinder, in the laminar range. The Navier-Stokes equations governing the flow are solved by the control volume method over a staggered grid arrangement. We have used the semi-implicit method for pressure-linked equation (SIMPLE) algorithm for computation. Our results show that the presence of a splitter plate upstream of the cylinder reduces the drag, but it has a small impact on the vortex shedding frequency when the plate length is beyond 1.5 time the height of the cylinder. The presence of a downstream splitter plate dampens the vortex shedding frequency. The entrainment of fluid into the inner side of the separated shear layers is obstructed by the downstream splitter plate. Our results suggest that by attaching in-line splitter plates both upstream and downstream of the cylinder, the vortex shedding can be suppressed, as well as a reduction in drag be obtained. We made a parametric study to determine the optimal length of these splitter plates so as to achieve low drag and low vortex shedding frequency.