We study the problem of parameter estimation for mean-reverting α-stable motion, dXt = (a0 - θ0Xt)dt + dZt, observed at discrete time instants. A least squares estimator is obtained and its asymptotics is discuss...We study the problem of parameter estimation for mean-reverting α-stable motion, dXt = (a0 - θ0Xt)dt + dZt, observed at discrete time instants. A least squares estimator is obtained and its asymptotics is discussed in the singular case (a0, θ0) = (0, 0). If a0 = 0, then the mean-reverting α-stable motion becomes Ornstein-Uhlenbeck process and is studied in [7] in the ergodic case θ0 〉 0. For the Ornstein-Uhlenbeck process, asymptotics of the least squares estimators for the singular case (θ0 = 0) and for ergodic case (θ0 〉 0) are completely different.展开更多
In this article, we are interested in least squares estimator for a class of pathdependent McKean-Vlasov stochastic differential equations (SDEs). More precisely, we investigate the consistency and asymptotic distribu...In this article, we are interested in least squares estimator for a class of pathdependent McKean-Vlasov stochastic differential equations (SDEs). More precisely, we investigate the consistency and asymptotic distribution of the least squares estimator for the unknown parameters involved by establishing an appropriate contrast function. Comparing to the existing results in the literature, the innovations of this article lie in three aspects:(i) We adopt a tamed Euler-Maruyama algorithm to establish the contrast function under the monotone condition, under which the Euler-Maruyama scheme no longer works;(ii) We take the advantage of linear interpolation with respect to the discrete-time observations to approximate the functional solution;(iii) Our model is more applicable and practice as we are dealing with SDEs with irregular coefficients (for example, Holder continuous) and pathdistribution dependent.展开更多
We consider the least square estimator for the parameters of Ornstein-Uhlenbeck processes dY_(s)=(∑_(j=1)^(k)μ_(j)φ_(j)(s)-βY_(s))ds+dZ_(s)^(q,H),driven by the Hermite process Z_(s)^(q,H)with order q≥1 and a Hurs...We consider the least square estimator for the parameters of Ornstein-Uhlenbeck processes dY_(s)=(∑_(j=1)^(k)μ_(j)φ_(j)(s)-βY_(s))ds+dZ_(s)^(q,H),driven by the Hermite process Z_(s)^(q,H)with order q≥1 and a Hurst index H∈(1/2,1),where the periodic functionsφ_(j)(s),,j=1,...,κare bounded,and the real numbersμ_(j),,j=1,...,κtogether withβ>0 are unknown parameters.We establish the consistency of a least squares estimation and obtain the asymptotic behavior for the estimator.We also introduce alternative estimators,which can be looked upon as an application of the least squares estimator.In terms of the fractional Ornstein-Uhlenbeck processes with periodic mean,our work can be regarded as its non-Gaussian extension.展开更多
In this article, we study a least squares estimator (LSE) of θ for the Ornstein- Uhlenbeck process X0=0,dXt=θXtdt+dBt^ab, t ≥ 0 driven by weighted fractional Brownian motion B^a,b with parameters a, b. We obtain...In this article, we study a least squares estimator (LSE) of θ for the Ornstein- Uhlenbeck process X0=0,dXt=θXtdt+dBt^ab, t ≥ 0 driven by weighted fractional Brownian motion B^a,b with parameters a, b. We obtain the consistency and the asymptotic distribution of the LSE based on the observation {Xs, s∈[0,t]} as t tends to infinity.展开更多
Kalman filter is commonly used in data filtering and parameters estimation of nonlinear system,such as projectile's trajectory estimation and control.While there is a drawback that the prior error covariance matri...Kalman filter is commonly used in data filtering and parameters estimation of nonlinear system,such as projectile's trajectory estimation and control.While there is a drawback that the prior error covariance matrix and filter parameters are difficult to be determined,which may result in filtering divergence.As to the problem that the accuracy of state estimation for nonlinear ballistic model strongly depends on its mathematical model,we improve the weighted least squares method(WLSM)with minimum model error principle.Invariant embedding method is adopted to solve the cost function including the model error.With the knowledge of measurement data and measurement error covariance matrix,we use gradient descent algorithm to determine the weighting matrix of model error.The uncertainty and linearization error of model are recursively estimated by the proposed method,thus achieving an online filtering estimation of the observations.Simulation results indicate that the proposed recursive estimation algorithm is insensitive to initial conditions and of good robustness.展开更多
Performance of the Adaptive Coding and Modulation(ACM) strongly depends on the retrieved Channel State Information(CSI),which can be obtained using the channel estimation techniques relying on pilot symbol transmissio...Performance of the Adaptive Coding and Modulation(ACM) strongly depends on the retrieved Channel State Information(CSI),which can be obtained using the channel estimation techniques relying on pilot symbol transmission.Earlier analysis of methods of pilot-aided channel estimation for ACM systems were relatively little.In this paper,we investigate the performance of CSI prediction using the Minimum Mean Square Error(MMSE)channel estimator for an ACM system.To solve the two problems of MMSE:high computational operations and oversimplified assumption,we then propose the Low-Complexity schemes(LC-MMSE and Recursion LC-MMSE(R-LC-MMSE)).Computational complexity and Mean Square Error(MSE) are presented to evaluate the efficiency of the proposed algorithm.Both analysis and numerical results show that LC-MMSE performs close to the wellknown MMSE estimator with much lower complexity and R-LC-MMSE improves the application of MMSE estimation to specific circumstances.展开更多
In this paper, we define a new class of biased linear estimators of the vector of unknown parameters in the deficient_rank linear model based on the spectral decomposition expression of the best linear minimun bias es...In this paper, we define a new class of biased linear estimators of the vector of unknown parameters in the deficient_rank linear model based on the spectral decomposition expression of the best linear minimun bias estimator. Some important properties are discussed. By appropriate choices of bias parameters, we construct many interested and useful biased linear estimators, which are the extension of ordinary biased linear estimators in the full_rank linear model to the deficient_rank linear model. At last, we give a numerical example in geodetic adjustment.展开更多
Let (X, d,μ) be a metric measure space endowed with a metric d and a nonnegative Borel doubling measure μ. Let L be a second order non-negative self-adjoint operator on L^2(X). Assume that the semigroup e^-tL ge...Let (X, d,μ) be a metric measure space endowed with a metric d and a nonnegative Borel doubling measure μ. Let L be a second order non-negative self-adjoint operator on L^2(X). Assume that the semigroup e^-tL generated by L satisfies the Davies-Gaffney estimates. Also, assume that L satisfies Plancherel type estimate. Under these conditions, we show that Stein's square function Gδ(L) arising from Bochner-Riesz means associated to L is bounded from the Hardy spaces HL^p(X) to L^p(X) for all 0 〈 p ≤ 1.展开更多
Pulse laser range detector is to measure the distance by estimating the time delay between the emitting pulse and echo pulse.In this paper,a mathematical model for the target echo signal of laser fuze has been establi...Pulse laser range detector is to measure the distance by estimating the time delay between the emitting pulse and echo pulse.In this paper,a mathematical model for the target echo signal of laser fuze has been established;in accordance with this model,the formulas for echo time-delay estimation and for amplitude estimation based on least squares criterion have been deduced.It is argued and simulated that the resolution of echo time-delay estimation could be improved through multi-reference correlation approach.Experiments illustrate that the approach enables pulsed laser fuze to perform high-precision ranging under a low signal-to-noise ratio condition.展开更多
Recursive algorithms are very useful for computing M-estimators of regression coefficients and scatter parameters. In this article, it is shown that for a nondecreasing ul (t), under some mild conditions the recursi...Recursive algorithms are very useful for computing M-estimators of regression coefficients and scatter parameters. In this article, it is shown that for a nondecreasing ul (t), under some mild conditions the recursive M-estimators of regression coefficients and scatter parameters are strongly consistent and the recursive M-estimator of the regression coefficients is also asymptotically normal distributed. Furthermore, optimal recursive M-estimators, asymptotic efficiencies of recursive M-estimators and asymptotic relative efficiencies between recursive M-estimators of regression coefficients are studied.展开更多
A kernel density estimator is proposed when tile data are subject to censorship in multivariate case. The asymptotic normality, strong convergence and asymptotic optimal bandwidth which minimize the mean square error ...A kernel density estimator is proposed when tile data are subject to censorship in multivariate case. The asymptotic normality, strong convergence and asymptotic optimal bandwidth which minimize the mean square error of the estimator are studied.展开更多
In this paper, we consider the following semipaxametric regression model under fixed design: yi = xi′β+g(xi)+ei. The estimators of β, g(·) and σ^2 axe obtained by using the least squares and usual nonp...In this paper, we consider the following semipaxametric regression model under fixed design: yi = xi′β+g(xi)+ei. The estimators of β, g(·) and σ^2 axe obtained by using the least squares and usual nonparametric weight function method and their strong consistency is proved under the suitable conditions.展开更多
A Norton-Rice distribution(NRD)is a versatile,flexible distribution for k ordered distances from a random location to the k nearest objects.In a context of plotless density estimation(PDE)with n randomly chosen sample...A Norton-Rice distribution(NRD)is a versatile,flexible distribution for k ordered distances from a random location to the k nearest objects.In a context of plotless density estimation(PDE)with n randomly chosen sample locations,and distances measured to the k=6 nearest objects,the NRD provided a good fit to distance data from seven populations with a census of forest tree stem locations.More importantly,the three parameters of a NRD followed a simple trend with the order(1,…,6)of observed distances.The trend is quantified and exploited in a proposed new PDE through a joint maximum likelihood estimation of the NRD parameters expressed as a functions of distance order.In simulated probability sampling from the seven populations,the proposed PDE had the lowest overall bias with a good performance potential when compared to three alternative PDEs.However,absolute bias increased by 0.8 percentage points when sample size decreased from 20 to 10.In terms of root mean squared error(RMSE),the new proposed estimator was at par with an estimator published in Ecology when this study was wrapping up,but otherwise superior to the remaining two investigated PDEs.Coverage of nominal 95%confidence intervals averaged 0.94 for the new proposed estimators and 0.90,0.96,and 0.90 for the comparison PDEs.Despite tangible improvements in PDEs over the last decades,a globally least biased PDE remains elusive.展开更多
第五代移动通信技术(5th-generation mobile communication technology,5G)网络对高速率、低时延、高可靠性的移动通信处理需求不断增加,对终端基带信道估计算法的高性能和低复杂度设计、矩阵处理动态范围提出挑战。针对上述问题,本文...第五代移动通信技术(5th-generation mobile communication technology,5G)网络对高速率、低时延、高可靠性的移动通信处理需求不断增加,对终端基带信道估计算法的高性能和低复杂度设计、矩阵处理动态范围提出挑战。针对上述问题,本文提出一种基于相关矩阵托普利兹(Toeplitz)特性的信道估计算法。依据信道的相干带宽特性计算信道相关矩阵并保留必要的较低矩阵阶数;基于相关矩阵的Toeplitz特性设计低复杂度的递归求逆算法,并针对加权矩阵乘法的元素重复性将矩阵乘法化简为矩阵点乘,简化加权矩阵运算;同时引入跟踪信噪比变化的缩放补偿因子对计算过程和结果分别进行缩放和补偿。理论分析和仿真结果显示,本文所提算法可在达到优异的信道估计性能条件下,有效降低运算复杂度,并极大降低算法矩阵处理的动态范围。展开更多
基金Hu is supported by the National Science Foundation under Grant No.DMS0504783Long is supported by FAU Start-up funding at the C. E. Schmidt College of Science
文摘We study the problem of parameter estimation for mean-reverting α-stable motion, dXt = (a0 - θ0Xt)dt + dZt, observed at discrete time instants. A least squares estimator is obtained and its asymptotics is discussed in the singular case (a0, θ0) = (0, 0). If a0 = 0, then the mean-reverting α-stable motion becomes Ornstein-Uhlenbeck process and is studied in [7] in the ergodic case θ0 〉 0. For the Ornstein-Uhlenbeck process, asymptotics of the least squares estimators for the singular case (θ0 = 0) and for ergodic case (θ0 〉 0) are completely different.
文摘In this article, we are interested in least squares estimator for a class of pathdependent McKean-Vlasov stochastic differential equations (SDEs). More precisely, we investigate the consistency and asymptotic distribution of the least squares estimator for the unknown parameters involved by establishing an appropriate contrast function. Comparing to the existing results in the literature, the innovations of this article lie in three aspects:(i) We adopt a tamed Euler-Maruyama algorithm to establish the contrast function under the monotone condition, under which the Euler-Maruyama scheme no longer works;(ii) We take the advantage of linear interpolation with respect to the discrete-time observations to approximate the functional solution;(iii) Our model is more applicable and practice as we are dealing with SDEs with irregular coefficients (for example, Holder continuous) and pathdistribution dependent.
基金supported by National Natural Science Foundation of China(12071003).
文摘We consider the least square estimator for the parameters of Ornstein-Uhlenbeck processes dY_(s)=(∑_(j=1)^(k)μ_(j)φ_(j)(s)-βY_(s))ds+dZ_(s)^(q,H),driven by the Hermite process Z_(s)^(q,H)with order q≥1 and a Hurst index H∈(1/2,1),where the periodic functionsφ_(j)(s),,j=1,...,κare bounded,and the real numbersμ_(j),,j=1,...,κtogether withβ>0 are unknown parameters.We establish the consistency of a least squares estimation and obtain the asymptotic behavior for the estimator.We also introduce alternative estimators,which can be looked upon as an application of the least squares estimator.In terms of the fractional Ornstein-Uhlenbeck processes with periodic mean,our work can be regarded as its non-Gaussian extension.
基金supported by the National Natural Science Foundation of China(11271020)the Distinguished Young Scholars Foundation of Anhui Province(1608085J06)supported by the National Natural Science Foundation of China(11171062)
文摘In this article, we study a least squares estimator (LSE) of θ for the Ornstein- Uhlenbeck process X0=0,dXt=θXtdt+dBt^ab, t ≥ 0 driven by weighted fractional Brownian motion B^a,b with parameters a, b. We obtain the consistency and the asymptotic distribution of the LSE based on the observation {Xs, s∈[0,t]} as t tends to infinity.
基金This work is supported by Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX18_0467)Jiangsu Province,China.During the revision of this paper,the author is supported by China Scholarship Council(No.201906840021)China to continue some research related to data processing.
文摘Kalman filter is commonly used in data filtering and parameters estimation of nonlinear system,such as projectile's trajectory estimation and control.While there is a drawback that the prior error covariance matrix and filter parameters are difficult to be determined,which may result in filtering divergence.As to the problem that the accuracy of state estimation for nonlinear ballistic model strongly depends on its mathematical model,we improve the weighted least squares method(WLSM)with minimum model error principle.Invariant embedding method is adopted to solve the cost function including the model error.With the knowledge of measurement data and measurement error covariance matrix,we use gradient descent algorithm to determine the weighting matrix of model error.The uncertainty and linearization error of model are recursively estimated by the proposed method,thus achieving an online filtering estimation of the observations.Simulation results indicate that the proposed recursive estimation algorithm is insensitive to initial conditions and of good robustness.
基金supported by the 2011 China Aerospace Science and Technology Foundationthe Certain Ministry Foundation under Grant No.20212HK03010
文摘Performance of the Adaptive Coding and Modulation(ACM) strongly depends on the retrieved Channel State Information(CSI),which can be obtained using the channel estimation techniques relying on pilot symbol transmission.Earlier analysis of methods of pilot-aided channel estimation for ACM systems were relatively little.In this paper,we investigate the performance of CSI prediction using the Minimum Mean Square Error(MMSE)channel estimator for an ACM system.To solve the two problems of MMSE:high computational operations and oversimplified assumption,we then propose the Low-Complexity schemes(LC-MMSE and Recursion LC-MMSE(R-LC-MMSE)).Computational complexity and Mean Square Error(MSE) are presented to evaluate the efficiency of the proposed algorithm.Both analysis and numerical results show that LC-MMSE performs close to the wellknown MMSE estimator with much lower complexity and R-LC-MMSE improves the application of MMSE estimation to specific circumstances.
文摘In this paper, we define a new class of biased linear estimators of the vector of unknown parameters in the deficient_rank linear model based on the spectral decomposition expression of the best linear minimun bias estimator. Some important properties are discussed. By appropriate choices of bias parameters, we construct many interested and useful biased linear estimators, which are the extension of ordinary biased linear estimators in the full_rank linear model to the deficient_rank linear model. At last, we give a numerical example in geodetic adjustment.
文摘Let (X, d,μ) be a metric measure space endowed with a metric d and a nonnegative Borel doubling measure μ. Let L be a second order non-negative self-adjoint operator on L^2(X). Assume that the semigroup e^-tL generated by L satisfies the Davies-Gaffney estimates. Also, assume that L satisfies Plancherel type estimate. Under these conditions, we show that Stein's square function Gδ(L) arising from Bochner-Riesz means associated to L is bounded from the Hardy spaces HL^p(X) to L^p(X) for all 0 〈 p ≤ 1.
基金Sponsored by the National Defense Science and Technology Laboratory Foundation (9140C3601130802)
文摘Pulse laser range detector is to measure the distance by estimating the time delay between the emitting pulse and echo pulse.In this paper,a mathematical model for the target echo signal of laser fuze has been established;in accordance with this model,the formulas for echo time-delay estimation and for amplitude estimation based on least squares criterion have been deduced.It is argued and simulated that the resolution of echo time-delay estimation could be improved through multi-reference correlation approach.Experiments illustrate that the approach enables pulsed laser fuze to perform high-precision ranging under a low signal-to-noise ratio condition.
基金supported by the Natural Sciences and Engineering Research Council of Canadathe National Natural Science Foundation of China+2 种基金the Doctorial Fund of Education Ministry of Chinasupported by the Natural Sciences and Engineering Research Council of Canadasupported by the National Natural Science Foundation of China
文摘Recursive algorithms are very useful for computing M-estimators of regression coefficients and scatter parameters. In this article, it is shown that for a nondecreasing ul (t), under some mild conditions the recursive M-estimators of regression coefficients and scatter parameters are strongly consistent and the recursive M-estimator of the regression coefficients is also asymptotically normal distributed. Furthermore, optimal recursive M-estimators, asymptotic efficiencies of recursive M-estimators and asymptotic relative efficiencies between recursive M-estimators of regression coefficients are studied.
文摘A kernel density estimator is proposed when tile data are subject to censorship in multivariate case. The asymptotic normality, strong convergence and asymptotic optimal bandwidth which minimize the mean square error of the estimator are studied.
基金Supported by the National Natural Science Foundation of China(10571008)Supported by the Natural Science Foundation of Henan(0511013300)Supported by the National Science Foundation of Henan Education Department(2006110012)
文摘In this paper, we consider the following semipaxametric regression model under fixed design: yi = xi′β+g(xi)+ei. The estimators of β, g(·) and σ^2 axe obtained by using the least squares and usual nonparametric weight function method and their strong consistency is proved under the suitable conditions.
基金The work was supported by the Canadian Forest Service.
文摘A Norton-Rice distribution(NRD)is a versatile,flexible distribution for k ordered distances from a random location to the k nearest objects.In a context of plotless density estimation(PDE)with n randomly chosen sample locations,and distances measured to the k=6 nearest objects,the NRD provided a good fit to distance data from seven populations with a census of forest tree stem locations.More importantly,the three parameters of a NRD followed a simple trend with the order(1,…,6)of observed distances.The trend is quantified and exploited in a proposed new PDE through a joint maximum likelihood estimation of the NRD parameters expressed as a functions of distance order.In simulated probability sampling from the seven populations,the proposed PDE had the lowest overall bias with a good performance potential when compared to three alternative PDEs.However,absolute bias increased by 0.8 percentage points when sample size decreased from 20 to 10.In terms of root mean squared error(RMSE),the new proposed estimator was at par with an estimator published in Ecology when this study was wrapping up,but otherwise superior to the remaining two investigated PDEs.Coverage of nominal 95%confidence intervals averaged 0.94 for the new proposed estimators and 0.90,0.96,and 0.90 for the comparison PDEs.Despite tangible improvements in PDEs over the last decades,a globally least biased PDE remains elusive.
文摘第五代移动通信技术(5th-generation mobile communication technology,5G)网络对高速率、低时延、高可靠性的移动通信处理需求不断增加,对终端基带信道估计算法的高性能和低复杂度设计、矩阵处理动态范围提出挑战。针对上述问题,本文提出一种基于相关矩阵托普利兹(Toeplitz)特性的信道估计算法。依据信道的相干带宽特性计算信道相关矩阵并保留必要的较低矩阵阶数;基于相关矩阵的Toeplitz特性设计低复杂度的递归求逆算法,并针对加权矩阵乘法的元素重复性将矩阵乘法化简为矩阵点乘,简化加权矩阵运算;同时引入跟踪信噪比变化的缩放补偿因子对计算过程和结果分别进行缩放和补偿。理论分析和仿真结果显示,本文所提算法可在达到优异的信道估计性能条件下,有效降低运算复杂度,并极大降低算法矩阵处理的动态范围。