期刊文献+
共找到89篇文章
< 1 2 5 >
每页显示 20 50 100
土石坝渗流预测的BiTCN-Attention-LSSVM模型研究
1
作者 傅蜀燕 杨石勇 +2 位作者 陈德辉 王子轩 欧斌 《水资源与水工程学报》 北大核心 2025年第1期118-128,共11页
为了克服常规机器学习模型在处理时序数据时难以有效捕捉长期依赖关系和局部重要性的局限,提出了一种基于双向时序卷积神经网络(BiTCN)、注意力机制(Attention)和最小二乘支持向量机(LSSVM)的土石坝渗流预测耦合模型。该模型利用BiTCN... 为了克服常规机器学习模型在处理时序数据时难以有效捕捉长期依赖关系和局部重要性的局限,提出了一种基于双向时序卷积神经网络(BiTCN)、注意力机制(Attention)和最小二乘支持向量机(LSSVM)的土石坝渗流预测耦合模型。该模型利用BiTCN从前、后两个方向捕获时序数据中的长期依赖关系,引入Attention机制帮助模型专注于与预测相关的关键局部特征,并将BiTCN-Attention深度处理后的特征输入LSSVM模型中进行预测,最后以2个不同的数据集分析了模型的预测效果。案例分析表明:与LSSVM、CNN-LSSVM和TCN-LSSVM相比,BiTCN-Attention-LSSVM模型预测的各项评价指标均为最优,在土石坝测压管水位预测中展现出更高的模型精度和稳定性;BiTCN与Attention的相互结合能够更好地提取时序数据中的相互依赖关系,将BiTCN-Attention提取的特征输入LSSVM中进行预测可获得良好的预测性能,数据集扩充处理后有效提高了模型的学习能力。 展开更多
关键词 土石坝测压管水位 渗流预测 双向时序卷积神经网络 注意力机制 最小二乘支持向量机
在线阅读 下载PDF
基于ANFIS-LSSVM的计算颜色恒常性算法研究
2
作者 王兴光 罗运辉 +1 位作者 王庆 陈业红 《齐鲁工业大学学报》 CAS 2024年第2期62-72,共11页
计算颜色恒常性是指消除场景光源的影响从而再现物体真实颜色的能力。目前,深度神经网络的应用使颜色恒常性精度显著提高,但大多数深度学习算法训练时间长、计算复杂度高,且需要大量的训练样本。针对此问题,提出了一种结合自适应神经模... 计算颜色恒常性是指消除场景光源的影响从而再现物体真实颜色的能力。目前,深度神经网络的应用使颜色恒常性精度显著提高,但大多数深度学习算法训练时间长、计算复杂度高,且需要大量的训练样本。针对此问题,提出了一种结合自适应神经模糊推理系统(ANFIS)和最小二乘支持向量机(LSSVM)的简单有效的方法。该方法分为训练和预测两个阶段:在训练阶段,首先提取图像特征分别训练ANFIS、LSSVM两种初始光源估计模型,接着利用核函数变换将两种模型融合,然后利用预留训练样本进一步训练得到多元线性回归光源估计模型;在预测阶段,提取测试图像特征后,直接由训练所得模型预测得到该测试图像最终的场景光源颜色值。实验结果表明,与深度学习方法相比,本文所提方法计算复杂度较低,即使在小训练样本中也能有很好的光源估计性能。 展开更多
关键词 计算颜色恒常性 光源估计 自适应神经模糊推理系统(ANFIS) 最小二乘支持向量机(lssvm)
在线阅读 下载PDF
基于改进蚁群算法优化参数的LSSVM短期负荷预测 被引量:39
3
作者 龙文 梁昔明 +1 位作者 龙祖强 李朝辉 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第11期3408-3414,共7页
提出一种自动优选最小二乘支持向量机(LSSVM)模型参数的改进蚁群(MACO)算法。该算法将LSSVM模型的参数作为蚂蚁的位置向量,然后采用动态随机抽取的方法来确定目标个体引导蚁群进行全局搜索,同时在最优蚂蚁邻域内进行小步长局部搜索,找... 提出一种自动优选最小二乘支持向量机(LSSVM)模型参数的改进蚁群(MACO)算法。该算法将LSSVM模型的参数作为蚂蚁的位置向量,然后采用动态随机抽取的方法来确定目标个体引导蚁群进行全局搜索,同时在最优蚂蚁邻域内进行小步长局部搜索,找到模型的最优参数,得到基于MACO算法优化的LSSVM(MACO-LSSVM)预测模型。将优化后的LSSVM模型应用于短期电力负荷预测问题,选择湖南某地区日期为2009-08-01至2009-08-30各小时点的数据进行分析,对2009-08-31该日24 h的负荷进行预测,并与BP神经网络和SVM模型进行比较。研究结果表明:本文方法得到的均方根相对误差为1.71%,比用BP神经网络和SVM模型得到的均方根相对误差分别低1.61%和1.05%。 展开更多
关键词 最小二乘支持向量机 蚁群优化算法 参数优化 短期负荷预测
在线阅读 下载PDF
基于局域波法和KPCA-LSSVM的滚动轴承故障诊断 被引量:14
4
作者 杨先勇 周晓军 +1 位作者 张文斌 杨富春 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2010年第8期1519-1524,共6页
针对故障滚动轴承振动信号具有非平稳性,提出基于局域波法和核主元分析-最小二乘支持向量机(KPCA-LSSVM)的故障诊断方法.先对轴承振动信号进行局域波分解得到若干内禀模式函数(IMF),分别计算各IMF分量的特征能量、奇异值和AR模型参数作... 针对故障滚动轴承振动信号具有非平稳性,提出基于局域波法和核主元分析-最小二乘支持向量机(KPCA-LSSVM)的故障诊断方法.先对轴承振动信号进行局域波分解得到若干内禀模式函数(IMF),分别计算各IMF分量的特征能量、奇异值和AR模型参数作为原始特征向量,再用KPCA将原始特征向量映射到高维特征空间提取主元构造新的特征向量,将其作为LSSVM分类器的输入来实现轴承的故障诊断.故障诊断试验结果表明,KPCA-LSSVM诊断方法通过KPCA得到更多的识别信息,改善了LSSVM的分类性能,相对于直接LSSVM诊断方法具有更优的泛化性,可准确识别轴承的故障类别和严重程度. 展开更多
关键词 滚动轴承 故障诊断 局域波法 核主元分析 最小二乘支持向量机
在线阅读 下载PDF
基于时变ARMA和EMD-PSO-LSSVM算法的非平稳下击暴流风速预测 被引量:10
5
作者 李春祥 迟恩楠 +1 位作者 何亮 李正农 《振动与冲击》 EI CSCD 北大核心 2016年第17期33-38,51,共7页
根据非平稳过程的进化谱理论,导出基于TARMA模型的非平稳脉动风速模拟式。基于模拟解析式,得到一些空间点非平稳下击暴流风速的模拟时间序列;运用经验模式分解(EMD)和基于粒子群优化(PSO)的最小二乘支持向量机(LSSVM)(简称为PSO-LSSVM)... 根据非平稳过程的进化谱理论,导出基于TARMA模型的非平稳脉动风速模拟式。基于模拟解析式,得到一些空间点非平稳下击暴流风速的模拟时间序列;运用经验模式分解(EMD)和基于粒子群优化(PSO)的最小二乘支持向量机(LSSVM)(简称为PSO-LSSVM)算法,经MATLAB平台编制程序,根据上下空间点风速样本预测出中间高度处的非平稳下击暴流风速时程。通过功率谱、自相关和互相关函数预测值与模拟值的比较及平均误差(AE)、均方根误差(MSE)和相关系数(R)的评价,验证了基于时变ARMA模型和EMD-PSO-LSSVM算法的下击暴流风速模拟与预测的可行性。 展开更多
关键词 下击暴流 预测 时变ARMA 经验模式分解 最小二乘支持向量机
在线阅读 下载PDF
基于混合PSO优化的LSSVM锅炉烟气含氧量预测控制 被引量:22
6
作者 龙文 梁昔明 龙祖强 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第3期980-985,共6页
烟气含氧量是影响火电厂锅炉运行安全性和经济性的一个重要因素,影响锅炉烟气含氧量的因素多而复杂,对烟气含氧量特性进行建模与控制是实现锅炉正常运行的基础。借助现场运行数据,根据锅炉烟气含氧量的特性,建立基于最小二乘支持向量机(... 烟气含氧量是影响火电厂锅炉运行安全性和经济性的一个重要因素,影响锅炉烟气含氧量的因素多而复杂,对烟气含氧量特性进行建模与控制是实现锅炉正常运行的基础。借助现场运行数据,根据锅炉烟气含氧量的特性,建立基于最小二乘支持向量机(LSSVM)的锅炉烟气含氧量预测模型。在此基础上结合全局寻优的混合粒子群算法(PSO),对锅炉烟气含氧量进行控制。仿真结果表明:该方法能够比较准确地对火电厂锅炉烟气含氧量进行测量和控制,为锅炉燃烧系统的闭环控制与优化运行提供了新的手段。 展开更多
关键词 最小二乘支持向量机 粒子群算法 烟气含氧量 预测控制
在线阅读 下载PDF
基于UGM-ULSSVM的导弹制导控制系统状态预测方法 被引量:4
7
作者 徐廷学 丛林虎 董琪 《上海交通大学学报》 EI CAS CSCD 北大核心 2015年第12期1761-1767,共7页
针对基于特征参数的导弹制导控制系统状态预测存在的状态数据不等间隔、小样本的问题,并考虑各性能特征参数间的相互影响、相互关联的关系,提出了一种基于非等间距灰色联合最小二乘支持向量机(UGM-ULSSVM)的退化状态预测方法.在UGM-ULS... 针对基于特征参数的导弹制导控制系统状态预测存在的状态数据不等间隔、小样本的问题,并考虑各性能特征参数间的相互影响、相互关联的关系,提出了一种基于非等间距灰色联合最小二乘支持向量机(UGM-ULSSVM)的退化状态预测方法.在UGM-ULSSVM模型的训练阶段,根据特征参数序列建立其非等间距灰色预测模型(UGM(1,1)),将UGM(1,1)的拟合值作为输入,原始数据序列作为输出,分别训练得到时间型最小二乘支持向量机(TLSSVM)与空间型最小二乘支持向量机(SLSSVM);在模型的预测阶段,由建立的UGM(1,1)模型和通过证据理论融合TLSSVM和SLSSVM建立的ULSSVM模型组合得到UGM-ULSSVM状态预测模型.以导弹制导控制系统为例,实现了关键参数预测,结果验证了方法的合理性与有效性. 展开更多
关键词 导弹 状态预测 非等间距 最小二乘支持向量机
在线阅读 下载PDF
应用双树复小波包和NCA-LSSVM检测磁瓦内部缺陷 被引量:6
8
作者 谢罗峰 徐慧宁 +2 位作者 黄沁元 赵越 殷国富 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2017年第1期184-191,共8页
提出结合双树复小波包变换(DTCWPT)、邻域成分分析法(NCA)、最小二乘支持向量机(LSSVM)的磁瓦内部缺陷检测方法.通过双树复小波包将采集的声音信号分解为6层,得到64个不同频带的子信号;求取特定频带信号的能量、偏度、峭度、模糊熵,并... 提出结合双树复小波包变换(DTCWPT)、邻域成分分析法(NCA)、最小二乘支持向量机(LSSVM)的磁瓦内部缺陷检测方法.通过双树复小波包将采集的声音信号分解为6层,得到64个不同频带的子信号;求取特定频带信号的能量、偏度、峭度、模糊熵,并将能量、偏度、峭度、模糊熵作为分类特征;利用邻域成分分析法对分类特征降维;将降维构造的新特征集输入到最小二乘支持向量机,判断磁瓦是否含有内部缺陷.通过实验验证,对提出的检测方法进行可行性分析.3种不同类型磁瓦的内部缺陷识别率均可以达到99%,与以往双谱切片方法相比,提高了检测识别率.试验结果表明,提出的方法具有检测速度快、可靠性高、适应性强等特点,为高效、准确地进行磁瓦内部缺陷检测提供了有效的技术手段. 展开更多
关键词 磁瓦 内部缺陷 双树复小波包变换(DTCWPT) 邻域成分分析法(NCA) 最小二乘支持向量机(lssvm)
在线阅读 下载PDF
基于CEEMDAN-云模型特征熵和LSSVM的磨机负荷预测研究 被引量:18
9
作者 蔡改贫 宗路 +1 位作者 罗小燕 胡显能 《振动与冲击》 EI CSCD 北大核心 2019年第7期128-133,共6页
针对球磨机磨矿过程中负荷难以检测和不能准确判断负荷状态的问题,提出了一种基于CEEMDAN-云模型特征熵和LSSVM的磨机负荷预测方法,用完整集成经验分解算法(CEEMDAN)对不同负荷的磨机振动信号进行分解,由相关系数法选取敏感模态分量重... 针对球磨机磨矿过程中负荷难以检测和不能准确判断负荷状态的问题,提出了一种基于CEEMDAN-云模型特征熵和LSSVM的磨机负荷预测方法,用完整集成经验分解算法(CEEMDAN)对不同负荷的磨机振动信号进行分解,由相关系数法选取敏感模态分量重构信号,利用逆向云发生器计算重构信号的云模型特征熵作为信号的特征参数,运用正向云发生器生成云模型特征向量的云滴图,结果表明,欠负荷、正常负荷、过负荷之间的熵值差异很大,可以较好地区分和识别磨机负荷状态;将云模型特征向量作为最小二乘支持向量机(LSSVM)的输入,料球比、充填率为输出,建立磨机负荷预测模型;通过磨矿实验验证了该方法的有效性,模型能够准确预测磨机负荷状态。 展开更多
关键词 磨机负荷 CEEMDAN 云模型特征熵 最小二乘支持向量机
在线阅读 下载PDF
基于混合人工蜂群和人工鱼群优化的LSSVM脉动风速预测 被引量:10
10
作者 张永康 李春祥 +1 位作者 郑晓芬 徐化喜 《振动与冲击》 EI CSCD 北大核心 2017年第15期203-209,共7页
考虑人工蜂群(ABC)和人工鱼群(AFS)算法的各自优势,提出混合智能算法(ABC+AFS)优化选择最小二乘支持向量机(LSSVM)参数的方法,以提高其脉动风速预测模型的性能。AFS算法有较强的全局寻优能力,混合智能算法以AFS算法中的人工鱼寻优方式代... 考虑人工蜂群(ABC)和人工鱼群(AFS)算法的各自优势,提出混合智能算法(ABC+AFS)优化选择最小二乘支持向量机(LSSVM)参数的方法,以提高其脉动风速预测模型的性能。AFS算法有较强的全局寻优能力,混合智能算法以AFS算法中的人工鱼寻优方式代替ABC算法中的引领蜂寻优方式,克服ABC算法易陷入局部最优的问题。同时,ABC算法中的正负反馈机制可以克服AFS算法的后期盲目寻优、收敛速度下降的问题。运用基于混合ABC、AFS优化的LSSVM对脉动风速进行了预测,并与基于ABC、AFS和粒子群(PSO)算法优化的LSSVM脉动风速预测结果进行了比较。数值结果表明,基于混合ABC+AFS优化的LSSVM脉动风速预测模型有更好性能,具有工程应用前景。 展开更多
关键词 人工蜂群算法 人工鱼群算法 混合智能优化 最小二乘支持向量机 脉动风速 预测性能
在线阅读 下载PDF
LSSVM模型下的LCVR相位延迟特性标定方法 被引量:2
11
作者 胡冬梅 刘泉 +1 位作者 于林韬 朱一峰 《红外与激光工程》 EI CSCD 北大核心 2016年第5期257-261,共5页
为了标定液晶相位可变延迟器(Liquid Crystal Variable Retarder,LCVR)的相位延迟特性,在25℃、405 nm波长下,利用搭建的测量装置采集了141组实验样本,其中71组样本为训练集,70组样本为预测集,利用最小二乘支持向量机(Least Squares Sup... 为了标定液晶相位可变延迟器(Liquid Crystal Variable Retarder,LCVR)的相位延迟特性,在25℃、405 nm波长下,利用搭建的测量装置采集了141组实验样本,其中71组样本为训练集,70组样本为预测集,利用最小二乘支持向量机(Least Squares Support Vector Machines,LSSVM)和支持向量机(Support Vector Machines,SVM)算法建立LCVR相位延迟量和驱动电压相关数学模型。实验表明,GASVR、PSOSVR、LSSVM方法下最大波长偏差△λ分别为0.013 6λ、0.013 7λ和0.004 5λ,均方误差提高两倍,通过比较,说明该模型能快速准确地预测LCVR工作范围内全部波长、全部电压值下的相位延迟。该方法可作为LCVR相位延迟特性标定的有效手段。 展开更多
关键词 液晶相位延迟器 最小二乘支持向量机 相位延迟 标定
在线阅读 下载PDF
基于PSO算法的HVAC系统LSSVM预测控制 被引量:7
12
作者 邹木春 龙文 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第7期2642-2647,共6页
针对暖通空调(HVAC)系统,提出一种基于粒子群优化(PSO)算法和最小二乘支持向量机(LSSVM)的预测控制方法。该方法利用LSSVM建立HVAC系统预测模型并预测系统的输出值,引入输出反馈和偏差校正以克服模型失配等因素引起的预测误差,以此构造... 针对暖通空调(HVAC)系统,提出一种基于粒子群优化(PSO)算法和最小二乘支持向量机(LSSVM)的预测控制方法。该方法利用LSSVM建立HVAC系统预测模型并预测系统的输出值,引入输出反馈和偏差校正以克服模型失配等因素引起的预测误差,以此构造加权预测控制性能指标。由PSO算法滚动优化得到系统的最优控制量。利用该控制方法对一个HVAC系统进行仿真实验,结果表明该方法具有较好的控制效果。 展开更多
关键词 暖通空调系统 预测控制 最小二乘支持向量机 PSO算法
在线阅读 下载PDF
船舶横摇变参数LSSVM在线预报方法(英文) 被引量:3
13
作者 刘胜 杨震 《船舶力学》 EI 北大核心 2012年第9期1024-1034,共11页
为提高船舶横摇运动预报的精度以及实时性,提出一种利用混沌理论和最小二乘支持向量机(Least Squares Support Vector Machine,LSSVM)在线训练算法的实时在线预报方法。针对预报模型的固定核参数不能适应横摇运动的动态变化而进行自动... 为提高船舶横摇运动预报的精度以及实时性,提出一种利用混沌理论和最小二乘支持向量机(Least Squares Support Vector Machine,LSSVM)在线训练算法的实时在线预报方法。针对预报模型的固定核参数不能适应横摇运动的动态变化而进行自动调节这一问题,设计一种基于LSSVM的变参数在线建模方法。利用三个LSSVM并行建模,将整个预报过程分为初始阶段和若干个预报阶段,并在每个阶段末选出下一个预报阶段的预报LSSVM,同时根据启发式规则为另两个LSSVM设定核参数,它们作为下一阶段的比较LSSVM。对某船横摇运动时间序列进行预报,仿真结果表明,所提变参数LSSVM在线预报方法平均相对均方误差为6.85%,相比于固定参数预报方法具有更好的适应性。 展开更多
关键词 船舶 横摇 混沌 lssvm 变参数 预报
在线阅读 下载PDF
基于EMD-PCA-LSSVM方法的滚动轴承安全域估计和状态辨识 被引量:2
14
作者 张媛 秦勇 +2 位作者 邢宗义 贾利民 廖贵玲 《高技术通讯》 CAS CSCD 北大核心 2013年第5期525-532,共8页
将安全域的思想引入滚动轴承的状态监测中,综合利用经验模式分解(EMD)、主成分分析(PCA)和最小二乘支持向量机(LSSVM),进行了滚动轴承运行状态的安全域估计以及正常和各种故障状态的辨识。首先,按一定的时间间隔将采集的振动数据分段,... 将安全域的思想引入滚动轴承的状态监测中,综合利用经验模式分解(EMD)、主成分分析(PCA)和最小二乘支持向量机(LSSVM),进行了滚动轴承运行状态的安全域估计以及正常和各种故障状态的辨识。首先,按一定的时间间隔将采集的振动数据分段,每段数据进行EMD后获得各本征模函数(IMF)分量;其次,基于各段数据的本征模函数分量,利用主成分分析方法提取出每段数据的T^2统计量和平方预估误差(SPE)统计量控制限值作为滚动轴承的状态特征量;最后,利用二分类的LSSVM进行滚动轴承运行状态的安全域估计,利用多分类的LSSVM进行滚动轴承的正常以及滚动体故障、内圈故障、外圈故障四种状态的辨识。试验结果显示安全域估计准确率和多种状态辨识正确率均大于95%,验证了上述方法的有效性。 展开更多
关键词 滚动轴承 状态监测 安全域 经验模式分解(EMD) 主成分分析(PCA) 最小二 乘支持向量机(lssvm)
在线阅读 下载PDF
基于CCA对LSSVM分类器的稀疏化 被引量:2
15
作者 陶少辉 陈德钊 胡望明 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2007年第7期1093-1096,1118,共5页
为了对分类最小二乘支持向量机实施有效的稀疏化,以提高分类速率,采用分类相关分析算法,按序提取样本核矩阵的全部分类相关成分,并依据样本核矩阵各列与分类相关成分的相关性,对训练集所有个体按分类的重要性排序,进而可选取最重要的部... 为了对分类最小二乘支持向量机实施有效的稀疏化,以提高分类速率,采用分类相关分析算法,按序提取样本核矩阵的全部分类相关成分,并依据样本核矩阵各列与分类相关成分的相关性,对训练集所有个体按分类的重要性排序,进而可选取最重要的部分个体作为支持向量,并将其余非支持向量的信息转移至支持向量,以提高支持向量的分类表达能力.由此构建一种新的稀疏型最小二乘支持向量机CS-LSSVM,并将其应用于多个模式分类的实际问题.测试结果表明,CS-LSSVM稀疏性很强,且保持了标准LSSVM的分类性能,还可直接适用于多类问题. 展开更多
关键词 模式分类 最小二乘支持向量机 稀疏化 样本核矩阵 分类相关分析
在线阅读 下载PDF
基于LSSVM的电梯交通模式的模糊识别 被引量:3
16
作者 王鹿军 吕征宇 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2012年第7期1333-1338,共6页
提出可以对电梯交通模式进行模糊识别的方法.采用最小二乘支持向量机(LSSVM)的回归算法来学习2种交通模式的相对隶属度,通过相对比较法得到当前时刻所有交通模式的隶属度.介绍了LSSVM二值分类算法及传统的多值分类算法,分析LSSVM多值分... 提出可以对电梯交通模式进行模糊识别的方法.采用最小二乘支持向量机(LSSVM)的回归算法来学习2种交通模式的相对隶属度,通过相对比较法得到当前时刻所有交通模式的隶属度.介绍了LSSVM二值分类算法及传统的多值分类算法,分析LSSVM多值分类与函数回归的关系.分析结果表明,采用函数回归算法可以进行多值分类.若以交通模式的隶属度作为类标,则可采用LSSVM的回归算法来进行2种交通模式的模糊分类.为了提高LSSVM的线性度,分3步逐步细分电梯客流的交通模式.实验结果表明,采用该方法得到的各交通模式隶属度随时间的变化曲线与依据群控专家经验得到的曲线非常相似,识别结果的平均误差小于应用神经网络识别的平均误差,可将识别结果作为电梯群控系统的输入参数. 展开更多
关键词 最小二乘支持向量机(lssvm) 电梯群控系统 交通模式 模糊识别
在线阅读 下载PDF
露天煤矿边坡稳定性预测的PSO-LSSVM模型 被引量:7
17
作者 温廷新 张波 《有色金属(矿山部分)》 2014年第1期51-56,共6页
针对边坡工程稳定性预测的复杂性,将粒子群算法和最小二乘支持向量机结合,使用粒子群优化算法寻找最小二乘支持向量机的最优参数,选取七项因素(岩石重度、黏聚力、内摩擦角、边坡角、边坡高度、孔隙水压力和振动系数)作为边坡稳定性的... 针对边坡工程稳定性预测的复杂性,将粒子群算法和最小二乘支持向量机结合,使用粒子群优化算法寻找最小二乘支持向量机的最优参数,选取七项因素(岩石重度、黏聚力、内摩擦角、边坡角、边坡高度、孔隙水压力和振动系数)作为边坡稳定性的影响因素,建立PSO-LSSVM的边坡稳定性预测模型。利用矿山实测30组边坡稳定性数据进行学习训练,另用12组数据进行测试,同时与LSSVM测试数据进行比较,验证了PSO-LSSVM模型在矿山边坡稳定性预测中有较高的准确度。 展开更多
关键词 粒子群算法 最小二乘支持向量机 边坡稳定性
在线阅读 下载PDF
基于LSSVM的JPEG图像隐写分析算法 被引量:2
18
作者 伊兵哲 平西建 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第A01期81-86,共6页
构造了一种基于最小二乘支持向量机的针对JPEG图像的隐写分析方法.在DCT域和空间域上提取了JPEG图像的18维特征向量,利用LSSVM构建分类器,并根据嵌入算法的种类设定分类器的输出,以达到检测秘密信息的存在性和判别使用何种隐写算法实施... 构造了一种基于最小二乘支持向量机的针对JPEG图像的隐写分析方法.在DCT域和空间域上提取了JPEG图像的18维特征向量,利用LSSVM构建分类器,并根据嵌入算法的种类设定分类器的输出,以达到检测秘密信息的存在性和判别使用何种隐写算法实施信息嵌入的目的.针对Jsteg,F5,MB三类最常用的JPEG图像隐写算法进行了二分类和四分类的实验.结果表明,构建二分类器进行载密图像检测时,正确率较高;构建多分类器检测载密图像、判断其使用的隐写算法时,对于高嵌入量的载密图像有着较高的判断正确率. 展开更多
关键词 数字隐写 隐写分析 JPEG图像 最小二乘支持向量机
在线阅读 下载PDF
基于LLE和LSSVM的滚动轴承故障诊断 被引量:1
19
作者 李力 李冕 陈法法 《煤矿机械》 2015年第7期308-310,共3页
针对滚动轴承故障特征混叠难以有效区分的问题,提出基于局部线性嵌入(LLE)与最小二乘支持向量机(LSSVM)结合的故障诊断方法。在由振动信号时域和频域统计指标构造的多维特征空间中,通过LLE算法对多维特征空间进行非线性降维处理,得到初... 针对滚动轴承故障特征混叠难以有效区分的问题,提出基于局部线性嵌入(LLE)与最小二乘支持向量机(LSSVM)结合的故障诊断方法。在由振动信号时域和频域统计指标构造的多维特征空间中,通过LLE算法对多维特征空间进行非线性降维处理,得到初始低维流形结构。将低维流形结构导入LSSVM中进行学习训练与故障辨识。应用于滚动轴承故障分析表明,该方法不仅对高维复杂的非线性故障特征具有良好的降维性能,而且故障识别率较之传统方法有明显提高,能够有效识别出高维特征空间的非线性故障特征。 展开更多
关键词 局部线性嵌入(LLE) 最小二乘支持向量机(lssvm) 滚动轴承故障 诊断
在线阅读 下载PDF
基于CEEMD-PSR-FOA-LSSVM的短期风电功率预测 被引量:3
20
作者 田丽 凤志民 刘世林 《可再生能源》 CAS 北大核心 2016年第11期1632-1638,共7页
为提高短期风电功率预测精度,针对风电功率波动性大、非周期性和非线性强的特点,提出基于互补集合经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)-相空间重构(phase space reconstruction,PSR)-果蝇优化算法... 为提高短期风电功率预测精度,针对风电功率波动性大、非周期性和非线性强的特点,提出基于互补集合经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)-相空间重构(phase space reconstruction,PSR)-果蝇优化算法(fruit fly optimization algorithm,FOA)-最小二乘支持向量机(least squares support vector machine,LSSVM)的组合预测方法。首先,运用CEEMD算法把风电功率序列分解为若干个分量,并用PSR算法来确定LSSVM建模过程中各个分量的输入和输出;然后,采用FOA算法优化LSSVM建模中的参数,并用训练好的LSSVM对各个分量进行单独预测;最后,用某风电场的实测数据对该组合预测方法进行验证。结果表明,与单独的LSSVM方法和FOA-LSSVM方法预测结果相比,建立的组合模型预测方法精度更高,对风电功率的短期预测更为有效和适用。 展开更多
关键词 短期风电功率预测 互补集合经验模态分解 相空间重构 果蝇优化算法 最小二乘支持向量机
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部