期刊文献+
共找到270篇文章
< 1 2 14 >
每页显示 20 50 100
基于GWO-LMS-RSSD的旋转机械耦合故障分离及特征强化方法
1
作者 许文 施卫华 +3 位作者 李红钢 华如南 刘厚林 董亮 《机电工程》 北大核心 2025年第4期677-685,共9页
针对旋转机械耦合故障中较弱故障易被较强故障淹没及噪声干扰严重的问题,提出了基于灰狼优化算法(GWO)的自适应滤波最小均方(LMS)算法,结合共振稀疏分解(RSSD)的耦合故障特征分离及强化方法。首先,采用自适应滤波LMS算法对耦合故障信号... 针对旋转机械耦合故障中较弱故障易被较强故障淹没及噪声干扰严重的问题,提出了基于灰狼优化算法(GWO)的自适应滤波最小均方(LMS)算法,结合共振稀疏分解(RSSD)的耦合故障特征分离及强化方法。首先,采用自适应滤波LMS算法对耦合故障信号进行了滤波处理,使故障特征得到了初步强化;然后,根据耦合故障的不同共振属性,利用RSSD算法将故障耦合分解为高共振分量和低共振分量,完成了耦合故障分离;特别地,针对LMS算法中参数依赖人工经验、自适应差等问题,研究了基于灰狼优化算法(GWO)的参数自适应优化方法,设计了以信噪比和均方误差构成的优化目标;最后,对稀疏分解得到的信号进行了包络解调,完成了耦合故障分离及特征强化,同时,利用模拟信号和实验信号对该方法进行了验证分析。研究结果表明:GWO-LMS-RSSD算法能用于有效降低噪声干扰,分离旋转机械耦合故障及强化故障特征。该研究成果可为强噪声干扰下耦合故障的特征分离及强化提供一种新的思路。 展开更多
关键词 耦合故障诊断 旋转机械 共振稀疏分解 自适应滤波最小均方算法 灰狼优化算法 信噪比 均方误差
在线阅读 下载PDF
基于激光测距传感器的机械臂末端位姿误差校正方法
2
作者 韩金利 尚卓 《传感技术学报》 北大核心 2025年第3期511-517,共7页
机械臂位姿校正由于误差考虑不充分,导致误差校正效果差,机械臂稳定性低,因此,提出基于激光测距传感器的机械臂末端位姿误差校正方法。该方法基于激光测距传感器原理,通过最小二乘算法,确定机械臂末端位姿误差,包括位置误差和姿态误差,... 机械臂位姿校正由于误差考虑不充分,导致误差校正效果差,机械臂稳定性低,因此,提出基于激光测距传感器的机械臂末端位姿误差校正方法。该方法基于激光测距传感器原理,通过最小二乘算法,确定机械臂末端位姿误差,包括位置误差和姿态误差,根据得到的误差,采用适应度改进的遗传算法,结合非线性传递特性分析机械臂的末端位姿,获得误差补偿,构建机械臂末端位姿的误差校正方法,实现机械臂末端位姿误差校正。经过实验证明,所提方法校正后的最高误差仅为0.13 cm,响应时间低于1.25 s,复杂度为0.30,并且振动区间较小,仅为[-0.03,0.02]m,说明该方法较为简洁,可以快速实现机械臂误差校正,降低了算法复杂度的同时,提高了机械臂的稳定性强。 展开更多
关键词 激光测距传感器 机械臂末端位姿 误差校正 最小二乘算法 遗传算法 非线性传递特性
在线阅读 下载PDF
基于IWOA-LSSVM的矿用差压式流量计误差补偿方法
3
作者 王伟峰 李煜 +3 位作者 田丰 李卓洋 白玉 李寒冰 《西安科技大学学报》 北大核心 2025年第4期726-734,共9页
针对矿用差压式流量计易受井下瓦斯抽采管道中温度、湿度、压力等因素的干扰,导致测量误差较大的问题,提出了一种基于改进的鲸鱼算法(IWOA)优化最小二乘支持向量机(LSSVM)的误差补偿方法。采用鲸鱼算法(WOA)优化LSSVM模型的核函数参数... 针对矿用差压式流量计易受井下瓦斯抽采管道中温度、湿度、压力等因素的干扰,导致测量误差较大的问题,提出了一种基于改进的鲸鱼算法(IWOA)优化最小二乘支持向量机(LSSVM)的误差补偿方法。采用鲸鱼算法(WOA)优化LSSVM模型的核函数参数和惩罚因子,引入Tent混沌映射、随机性学习方法以及自适应权重,构建IWOA-LSSVM误差补偿模型;搭建试验模拟测试平台,模拟抽采管道环境,应用Matlab对监测数据进行仿真,对比BP神经网络、PSO-LSSVM算法、GWO-LSSVM算法的误差补偿结果。结果表明:相较于原始测量值,BP神经网络使差压式流量计平均百分比误差从7.40%下降到1.13%,PSO-LSSVM算法使平均百分比误差下降到1.05%,GWO-LSSVM算法使平均百分比误差下降到0.47%,而IWOA-LSSVM算法可以使百分比误差下降到0.23%。IWOA-LSSVM算法能有效消除环境因素对流量计输出结果的影响,提高了矿用差压式流量计的可靠性与检测精度。 展开更多
关键词 差压式流量计 误差补偿 鲸鱼算法 最小二乘支持向量机 瓦斯抽采
在线阅读 下载PDF
基于约束优化模型的智能电表运行误差及日线损率联合估计方法 被引量:2
4
作者 吕玉玲 陈文礼 +3 位作者 程瑛颖 苏宇 陈飞宇 刘学文 《电网技术》 北大核心 2025年第3期1257-1265,共9页
台区日线损率是影响智能电表运行误差估计的重要因素。在现有的智能电表误差估计方法中,或假设日线损率为常值,或与总供电量成正比,这些假设通常与真实日线损率的实际变化规律不符,也会降低智能电表误差估计方法的性能。该文提出一种基... 台区日线损率是影响智能电表运行误差估计的重要因素。在现有的智能电表误差估计方法中,或假设日线损率为常值,或与总供电量成正比,这些假设通常与真实日线损率的实际变化规律不符,也会降低智能电表误差估计方法的性能。该文提出一种基于约束优化模型的智能电表误差与日线损率联合估计方法。首先,为精准刻画能量守恒方程,建立以智能电表误差与日线损率为变量的线性方程组;然后,通过对实际台区数据进行分析,获得智能电表误差与日线损率波动的上下界,并以此构造约束优化模型;最后,根据模型特点推导高效的原始-对偶算法迭代寻找约束优化问题的最优解。通过实际数据验证发现,与现有方法相比,该文所提方法在智能电表误差与日线损率的估计上均有更好的效果。 展开更多
关键词 智能电表 误差估计 日线损率 约束最小二乘 原始-对偶算法
在线阅读 下载PDF
基于多策略改进合作搜索算法的径流混合预报模型
5
作者 杜成锐 李旻 +3 位作者 孙大雁 梁志峰 王金龙 周波 《人民长江》 北大核心 2025年第7期56-65,共10页
针对传统径流预测方法存在的预测精度低及泛化能力差等问题,提出了集成逐次变分模态分解、多策略改进合作搜索算法及误差时空综合修正的径流混合预报模型。首先,利用逐次变分模态分解将径流时间序列分解为若干相对独立、互不影响的子序... 针对传统径流预测方法存在的预测精度低及泛化能力差等问题,提出了集成逐次变分模态分解、多策略改进合作搜索算法及误差时空综合修正的径流混合预报模型。首先,利用逐次变分模态分解将径流时间序列分解为若干相对独立、互不影响的子序列;其次,以最小二乘支持向量机模型为预报单元,分别通过正弦初始化、动态交流及游走变异等策略对合作搜索算法进行综合改进,提升了参数全局搜索能力和收敛稳定性;最后,对各模型预测结果进行叠加集成,运用误差时空修正策略进一步降低预测误差,保障结果精度和可靠性。在福建省池潭水库的工程应用表明:相较于LSTM、ELM、SVR、LSSVR等传统模拟,混合预报模型在径流预测结果中具有更高的RMSE、MAE、CC、NSE指标值,预见期1~4 d的NSE指标分别为0.986,0.982,0.976,0.967,展现出更高的精度和稳定性。各模块有效性检验结果表明,所提模型能精确捕捉非线性径流数据关系,降低预测偏差,可为变化条件下高精度径流预测提供参考。 展开更多
关键词 径流预报 逐次变分模态分解法 合作搜索算法 最小二乘支持向量回归 误差时空综合修正 池潭水库
在线阅读 下载PDF
基于麻雀搜寻优化算法的代理购电用户用电量多维度协同校核 被引量:1
6
作者 周颖 乔婧 +4 位作者 陈宋宋 赵伟博 丁一 武亚杰 田宇 《电网技术》 北大核心 2025年第2期604-612,I0064-I0067,共13页
随着代理购电业务稳步推进,用电量预测在智能电网运行中发挥着至关重要的作用。现阶段研究大多侧重于通过算法来提高预测结果的准确度和可靠性,而这些方法缺乏对电力系统多维因素的全面考量和精确校核。因此,多维度且全面地对代理购电... 随着代理购电业务稳步推进,用电量预测在智能电网运行中发挥着至关重要的作用。现阶段研究大多侧重于通过算法来提高预测结果的准确度和可靠性,而这些方法缺乏对电力系统多维因素的全面考量和精确校核。因此,多维度且全面地对代理购电用户用电量进行预测是代理购电业务中面临的问题之一。对此,该文提出了计及多维度协同的用户用电量预测结果校核方法。首先,该文采用了偏差概率分布模型分析各个维度(区域、行业、电压等级)的有效偏差分布,进行各维度有效偏差识别;其次,以误差最小为目标采用改进麻雀搜索算法(improved sparrow search algorithm,ISSA)优化算法进行多维度权重优化配比,构建预测值和权重值组合加权的多维度协同校核模型;最后选取误差指标对多维度校核后的预测值进行误差指标评估。结合某省的代理购电用户用电量对上述算法进行了验证,结果表明,基于ISSA优化算法的多维度协同校核方法在平均绝对误差指标下较行业维度、区域维度及电压等级维度分别降低了51.9%、23.4%和19.1%,均方根误差指标下较行业维度、区域维度及电压等级维度分别降低了40.0%、15.0%和8.6%,具有良好的泛化性。 展开更多
关键词 代理购电 误差校核 ISSA优化算法 组合权重 均方根误差
在线阅读 下载PDF
基于方波相位调制的多波长位移干涉测量
7
作者 刘琪 陈善勇 《应用光学》 北大核心 2025年第3期538-548,共11页
相位生成载波(phase generated carrier,PGC)技术是多波长光纤位移传感器(multi wavelength fiber displacement sensor,MWFDS)中的核心技术。提出一种基于方波信号相位调制和解调(square-wave phase modulation and demodulation,SWPMD... 相位生成载波(phase generated carrier,PGC)技术是多波长光纤位移传感器(multi wavelength fiber displacement sensor,MWFDS)中的核心技术。提出一种基于方波信号相位调制和解调(square-wave phase modulation and demodulation,SWPMD)的方法,研究构建了相应的光路系统,精确控制方波信号对多波长光束进行相位调制,对采集到的干涉信号进行数字处理以实现相位解调,进而复现位移信息。仿真实验部分系统地分析了不同频率调制信号及方波调制信号初始相位变化对位移复现精度的影响,无论调制参数如何变化,位移复原的均方根误差(root-mean-square error,RMSE)均稳定保持在0.15μm~0.3μm范围内。通过应用SWPMD方法,对复杂的位移轨迹进行了复现,证明了该方法在提升MWFDS性能方面的普适性和有效性。最后,计算分析了对不同步长方波位移的复现情况,证明了所提方法在理论上能够实现0.1 nm位移测量的分辨率。 展开更多
关键词 相位生成载波技术 光纤位移干涉测量 方波相位调制 解调算法 误差分析
在线阅读 下载PDF
基于改进SVM的电力工程造价预测 被引量:5
8
作者 刘云 李维嘉 +2 位作者 赵子豪 董振亮 陈志宾 《沈阳工业大学学报》 CAS 北大核心 2024年第4期367-372,共6页
针对支持向量机求解速度较慢且用于预测电力工程造价的性能不理想等问题,提出了一种基于改进SVM的电力工程造价预测模型。该模型全面考虑了电力工程成本的组成要素并进行参数归一化处理,利用最小二乘估计改进SVM模型,同时采用遗传算法求... 针对支持向量机求解速度较慢且用于预测电力工程造价的性能不理想等问题,提出了一种基于改进SVM的电力工程造价预测模型。该模型全面考虑了电力工程成本的组成要素并进行参数归一化处理,利用最小二乘估计改进SVM模型,同时采用遗传算法求解LSSVM的参数最优值,并通过优化后的GA-LSSVM模型实现对电力工程成本的预测。基于MATLAB仿真平台的仿真实验结果表明,模型预测的工程成本与实际值较为接近,归一化均方误差与平均绝对百分比误差分别为18.34万元和3.58%,且预测时间仅为256 ms,证明了其整体性能优于其他对比模型。 展开更多
关键词 电力工程 造价预测 支持向量机 最小二乘估计 遗传算法 GA-LSSVM模型 归一化处理 误差分析
在线阅读 下载PDF
基于改进乌鸦搜索算法评定圆度误差 被引量:1
9
作者 张志永 郑鹏 +1 位作者 王世强 郝用兴 《机床与液压》 北大核心 2024年第19期65-70,共6页
针对传统启发式智能优化算法评定圆度误差计算效率低且容易陷入局部最优解的问题,提出采用改进乌鸦搜索算法评定圆度误差。根据最小区域拟合准则建立乌鸦搜索算法评定圆度误差数学模型,并引入权重系数,提高算法全局搜索能力,同时设定最... 针对传统启发式智能优化算法评定圆度误差计算效率低且容易陷入局部最优解的问题,提出采用改进乌鸦搜索算法评定圆度误差。根据最小区域拟合准则建立乌鸦搜索算法评定圆度误差数学模型,并引入权重系数,提高算法全局搜索能力,同时设定最小二乘圆心附近为乌鸦搜索初始位置,提高算法搜索效率。最后通过模拟和实验验证了所提算法的准确性和高效性,并通过多组数据对比发现改进乌鸦搜索算法的全局搜索能力较遗传算法(GA)、粒子群算法(PSO)和传统乌鸦搜索算法(CSA)得到明显提升。 展开更多
关键词 圆度误差 乌鸦搜索算法 最小二乘法 最小区域法
在线阅读 下载PDF
应答器上行链路信号自适应解调方法的FPGA实现
10
作者 李建国 薛千树 陈明福 《科学技术与工程》 北大核心 2024年第20期8715-8722,共8页
为降低电磁干扰对信号传输的影响,分析了应答器上行链路信号传输过程及其易遭受干扰信号的特点,设计了基于符号最小均方误差(least mean square,LMS)算法的自适应解调方法。为在硬件平台中实现该解调方法,通过仿真计算,确定LMS算法的自... 为降低电磁干扰对信号传输的影响,分析了应答器上行链路信号传输过程及其易遭受干扰信号的特点,设计了基于符号最小均方误差(least mean square,LMS)算法的自适应解调方法。为在硬件平台中实现该解调方法,通过仿真计算,确定LMS算法的自适应算法中间变量变化范围,使用截位操作完成权值系数的更新,设置均衡器长度、步长因子、中值滤波系数分别为1、1/64、16,可在不占用过多硬件资源情况下获得良好的解调性能。解调算法在现场可编程门阵列(field programmable gata array,FPGA)上予以验证,实验表明,当信噪比为6 dB时,FPGA中自适应解调误码率为0.000001,在信噪比大于等于6 dB时,实测误码率与仿真分析误码率基本一致;FPGA自适应解调方法在列车不同速度等级下误码率均小于10^(-6)。 展开更多
关键词 应答器 自适应解调 最小均方误差(LMS)算法 现场可编程门阵列(FPGA) 信噪比 误码率
在线阅读 下载PDF
基于渐消因子的ECEF-GLS估计算法 被引量:1
11
作者 董云龙 张焱 《系统工程与电子技术》 EI CSCD 北大核心 2024年第1期137-142,共6页
传统的误差配准算法假设系统偏差恒定或缓慢变化,当系统误差发生突变或快速变化时,这一假设不再成立。针对这一问题,研究了时变条件下的误差配准算法,引入渐消因子,对常规的基于地心地固坐标系的广义最小二乘算法(generalized least squ... 传统的误差配准算法假设系统偏差恒定或缓慢变化,当系统误差发生突变或快速变化时,这一假设不再成立。针对这一问题,研究了时变条件下的误差配准算法,引入渐消因子,对常规的基于地心地固坐标系的广义最小二乘算法(generalized least squares algorithm based on the earth-centered earth-fixed coordinate system,ECEF-GLS)进行了修正,弱化历史量测对配准的影响,并对渐消因子的选取问题进行了研究,给出了合理的设计方法。算法验证表明,基于渐消因子的ECEF-GLS估计算法能够对时变的系统偏差进行有效估计,精度满足配准要求。 展开更多
关键词 基于地心地固坐标系的广义最小二乘算法 渐消因子 参数估计 时变 系统误差
在线阅读 下载PDF
基于误差修正和VMD-ICPA-LSSVM的短期风速预测建模 被引量:3
12
作者 钟琳 颜七笙 《南京信息工程大学学报》 CAS 北大核心 2024年第2期247-260,共14页
精准的风速预测是将风能大规模应用到电力系统中的关键,而风速序列的随机性和波动性等特点使得风速预测难度增加.为增强风速序列的可预测性,采用Logistic混沌映射策略、自适应参数调整策略以及引入变异策略对食肉植物算法(CPA)进行改进... 精准的风速预测是将风能大规模应用到电力系统中的关键,而风速序列的随机性和波动性等特点使得风速预测难度增加.为增强风速序列的可预测性,采用Logistic混沌映射策略、自适应参数调整策略以及引入变异策略对食肉植物算法(CPA)进行改进,并提出了基于误差修正和VMD-ICPA-LSSVM的短期风速预测模型.首先将气象因子作为最小二乘支持向量机(LSSVM)的输入对风速进行预测,获得误差序列.再利用K-L散度自适应地确定变分模态分解(VMD)的参数,并对误差序列进行分解.结合改进食肉植物算法(ICPA)优化LSSVM可调参数的方法来预测分解的子序列.叠加各子序列预测结果后对原始预测序列进行误差修正,进而得到最终风速预测值.实验结果表明,与其他模型相比,所提模型有着更好的预测精度和泛化性能. 展开更多
关键词 变分模态分解 食肉植物算法 最小二乘支持向量机 误差修正 风速预测
在线阅读 下载PDF
基于ASIT-UKF算法的锂电池荷电状态估计 被引量:2
13
作者 陈阳舟 伊磊 《北京工业大学学报》 CAS CSCD 北大核心 2024年第6期683-692,共10页
针对无迹卡尔曼滤波(unscented Kalman filter,UKF)算法估计锂电池荷电状态(state of charge,SOC)时精度低、稳定性差、产生的sigma点过多导致计算难度大等不足,提出一种基于自适应球形不敏变换方式的无迹卡尔曼滤波(unscented Kalman f... 针对无迹卡尔曼滤波(unscented Kalman filter,UKF)算法估计锂电池荷电状态(state of charge,SOC)时精度低、稳定性差、产生的sigma点过多导致计算难度大等不足,提出一种基于自适应球形不敏变换方式的无迹卡尔曼滤波(unscented Kalman filter based on adaptive spherical insensitive transformation,ASIT-UKF)算法。该算法通过使用球形不敏变换方式选择权系数以及初始化一元向量对sigma点的产生进行选取。与UKF算法相比,ASIT-UKF算法产生的sigma点减少近50%,使得算法的计算复杂度大大降低。同时,将产生的所有sigma点进行单位球形面上的归一化处理,提高了数值的稳定性。考虑到实际运行中锂电池系统噪声干扰带来的不确定性,加入Sage-Husa自适应滤波器对不确定性噪声的干扰进行实时更新和修正,以达到提高在线锂电池SOC估计精度的目的。最后,将均方根误差和最大绝对误差计算公式引入到性能估计指标中。实验结果表明,ASIT-UKF算法在准确度、鲁棒性和收敛性方面具有优越的性能。 展开更多
关键词 锂电池 荷电状态(state of charge SOC)估计 球形不敏变换 Sage-Husa滤波 无迹卡尔曼滤波(unscented Kalman filter UKF)算法 均方根误差
在线阅读 下载PDF
基于KPCA-GA-BP模型的页岩气集输管道的内腐蚀速率预测 被引量:2
14
作者 周逸轩 彭星煜 +1 位作者 耿月华 王思汗 《腐蚀与防护》 CAS CSCD 北大核心 2024年第4期63-68,共6页
针对页岩气集输管道的内腐蚀,提出了一种基于KPCA-GA-BP组合模型的腐蚀速率预测算法。以某条页岩气集输管道的检测结果作为训练数据,运用反向传播(BP)神经网络建立预测模型,运用遗传算法(GA)优化了神经网络权值和阈值的初始值,运用核主... 针对页岩气集输管道的内腐蚀,提出了一种基于KPCA-GA-BP组合模型的腐蚀速率预测算法。以某条页岩气集输管道的检测结果作为训练数据,运用反向传播(BP)神经网络建立预测模型,运用遗传算法(GA)优化了神经网络权值和阈值的初始值,运用核主成分分析法(KPCA)对数据进行了降维,在模型建立的过程中不断优化提升模型的预测精度,采用所建模型对另一条相邻管道进行预测并开挖验证。结果表明:选择TRAINGDM作为训练函数,隐含层节点为(8,1),遗传算法进化数为50,种群规模为100,交叉概率为0.3,变异概率为0.2,运用KPCA将数据从7维降为4维后,此模型的均方误差最低为0.12,当该模型用于相邻管道的预测时,均方误差为0.14。运用KPCAGA-BP模型,对页岩气集输管道内腐蚀速率进行预测具有一定的准确性,此模型可用于辅助指导现场内腐蚀直接评价等相关工作。 展开更多
关键词 页岩气集输管道 内腐蚀速率 BP神经网络 遗传算法 核主成分分析法(KPCA) 均方误差(MSE)
在线阅读 下载PDF
部分线性变系数模型的贝叶斯复合分位数回归 被引量:1
15
作者 李灿 杨建波 李荣 《广西师范大学学报(自然科学版)》 CAS 北大核心 2024年第5期117-129,共13页
部分线性变系数模型由参数和非参数2部分组成,具有适应范围广和解释性强双重优点。针对该模型的参数估计问题,采用B样条方法逼近非参数部分的未知光滑函数,进而利用复合非对称拉普拉斯分布实现贝叶斯复合分位数回归,并基于Gibbs抽样算... 部分线性变系数模型由参数和非参数2部分组成,具有适应范围广和解释性强双重优点。针对该模型的参数估计问题,采用B样条方法逼近非参数部分的未知光滑函数,进而利用复合非对称拉普拉斯分布实现贝叶斯复合分位数回归,并基于Gibbs抽样算法推导出所有未知参数的后验分布,以获取参数的估计值。通过数值模拟对贝叶斯复合分位数回归与贝叶斯分位数回归、贝叶斯线性回归参数估计效果进行比较分析,结果显示:当误差服从非正态分布时,在均方误差准则下,贝叶斯复合分位数回归估计表现更优。基于上述3种方法对实例数据进行预测分析,结果表明:在平均绝对偏差和均方误差预测意义下,基于贝叶斯复合分位数回归的预测效果更好。 展开更多
关键词 部分线性变系数模型 B样条 贝叶斯复合分位数回归 均方误差 Gibbs抽样算法
在线阅读 下载PDF
基于核极限学习机的下肢关节力矩预测方法 被引量:1
16
作者 宋永献 王祥祥 +3 位作者 李媛媛 夏文豪 李豪 宋文泽 《科学技术与工程》 北大核心 2024年第11期4599-4606,共8页
针对极限学习机(extreme learning machine,ELM)预测下肢关节力矩时,随机初始化输入权重和偏置影响模型准确度问题,提出一种基于核极限学习机(kernel based extreme learning machine,KELM)的下肢康复机器人关节力矩预测方法。该方法将... 针对极限学习机(extreme learning machine,ELM)预测下肢关节力矩时,随机初始化输入权重和偏置影响模型准确度问题,提出一种基于核极限学习机(kernel based extreme learning machine,KELM)的下肢康复机器人关节力矩预测方法。该方法将高斯核函数与ELM相融合,并采用遗传算法(genetic algorithm,GA)与粒子群优化(particle swarm optimization,PSO)结合的基因粒子群GAPSO对KELM的参数进行优化。首先,采集1位在跑步机上以0.4、0.5、0.6、0.7和0.8 m/s等5个不同速度行走的右下肢偏瘫患者运动数据并对数据进行预处理;其次,通过GAPSO对KELM进行优化,获得最优正则化系数C和核函数宽度参数S,将输出关节力矩与反向生物力学分析计算的关节作比较;最后,利用均方根误差(root mean square error,RMSE)和相关系数P来评价算法优越性。实验结果表明,基于GAPSO优化后的KELM(GAPSO-KELM)算法相对于PSO-KELM算法、KELM算法和ELM算法的平均最大均方根误差分别降低14%、18%、28%,且P除了0.8 m/s右侧踝关节内外翻是0.79外,其余P最小是0.84,GAPSO-KELM算法进一步提高预测精度,使其为康复治疗提供更有效的算法支持。 展开更多
关键词 高斯核函数 极限学习机 粒子群优化算法 遗传算法 均方根误差 相关系数
在线阅读 下载PDF
大角度三维基准转换的粗差探测算法
17
作者 戴鹏洋 王彬 《南京航空航天大学学报》 CAS CSCD 北大核心 2024年第1期88-95,共8页
三维基准转换广泛应用于大地测量、摄影测量、点云配准等领域,求解大角度、任意比例尺的三维基准转换参数的研究有很多。然而,当观测值中含有粗差时,得到的转换参数估值会受到不利影响甚至被严重扭曲。为处理含有粗差的大角度三维基准... 三维基准转换广泛应用于大地测量、摄影测量、点云配准等领域,求解大角度、任意比例尺的三维基准转换参数的研究有很多。然而,当观测值中含有粗差时,得到的转换参数估值会受到不利影响甚至被严重扭曲。为处理含有粗差的大角度三维基准转换问题,本文首先将大角度三维基准转换问题抽象为具有等式约束的最小二乘问题(Constrained least squares, CLS),推导参数在正交约束条件下的最小二乘解。然后,将灵敏度分析方法应用到CLS问题中,研究残差加权平方和对观测值扰动的局部敏感性,并基于这些敏感度指标构造局部检验统计量,进而推导出一个适用于CLS问题的粗差探测算法。最后,为核实该算法的有效性进行了仿真与实测数据实验。实验结果表明:本文提出的基于灵敏度检验统计量的数据探测算法可以降低粗差的负面影响,得到可靠的参数估值,从而有效解决大角度三维基准转换中的粗差处理问题。 展开更多
关键词 大角度三维基准转换 约束最小二乘 粗差 数据探测算法
在线阅读 下载PDF
基于遗传算法的多边形逼近3D数字曲线 被引量:9
18
作者 茹少峰 周明全 耿国华 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2004年第4期503-507,T007,共6页
首先对 3D数字曲线进行简单的数据压缩 通过对该曲线上的点列进行二进制编码定义来表示数字曲线的染色体 二进制串中的每一个位称为基因 ,每一个逼近多边形和染色体形成 1 1映射 目标函数使给定曲线和逼近多边形之间的均方差最小 构... 首先对 3D数字曲线进行简单的数据压缩 通过对该曲线上的点列进行二进制编码定义来表示数字曲线的染色体 二进制串中的每一个位称为基因 ,每一个逼近多边形和染色体形成 1 1映射 目标函数使给定曲线和逼近多边形之间的均方差最小 构造了解决该问题的选择、交叉、变异三个算子 所得最优染色体中基因值为 1的基因对应数字曲线的分界点 实验结果表明 。 展开更多
关键词 多边形逼近 遗传算法 染色体 均方差 基因 3D数字曲线 物体轮廓线 图像处理 模式识别 计算机视觉
在线阅读 下载PDF
变压器铁心磁滞模型参数辨识 被引量:25
19
作者 李晓萍 彭青顺 +2 位作者 李金保 文习山 鲁海亮 《电网技术》 EI CSCD 北大核心 2012年第2期200-205,共6页
针对描述铁心磁滞特性的Jiles-Atherton模型中参数确定较难问题,通过找出各参数对磁滞回线特征量的影响规律,确定各参数比较合理的拟合初始值。参数采用逐个优化算法,以实验获取的磁滞回线与计算得到的磁滞回线之间的均方误差最小值作... 针对描述铁心磁滞特性的Jiles-Atherton模型中参数确定较难问题,通过找出各参数对磁滞回线特征量的影响规律,确定各参数比较合理的拟合初始值。参数采用逐个优化算法,以实验获取的磁滞回线与计算得到的磁滞回线之间的均方误差最小值作为优化目标,并以2者之间的均方误差反馈控制每个参数的优化启动、优化停止及变化百分比,从而得到一组最佳逼近的Jiles-Atherton模型参数。研究结果表明该算法简单实用。通过拟合数据与理论数据、实际硅钢片数据及实验数据的对比,验证了该算法的正确性和有效性。 展开更多
关键词 Jiles-Atherton模型 磁滞回线 连续算法 优化 均方误差 参数辨识
在线阅读 下载PDF
最优聚类个数和初始聚类中心点选取算法研究 被引量:84
20
作者 张素洁 赵怀慈 《计算机应用研究》 CSCD 北大核心 2017年第6期1617-1620,共4页
传统K-means算法的聚类数k值事先无法确定,而且算法是随机性地选取初始聚类中心点,这样容易造成聚类结果不稳定且准确率较低。基于SSE来选取聚类个数k值,基于聚类中心点所在的周围区域相对比较密集、聚类中心点之间距离相对较远的选取... 传统K-means算法的聚类数k值事先无法确定,而且算法是随机性地选取初始聚类中心点,这样容易造成聚类结果不稳定且准确率较低。基于SSE来选取聚类个数k值,基于聚类中心点所在的周围区域相对比较密集、聚类中心点之间距离相对较远的选取原则来选取初始聚类中心点,避免初始聚类中心点集中在一个小的范围,防止陷入局部最优。实验证明,该算法能选取最优的k值,通过用标准的UCI数据库进行实验,采用的算法能选择出唯一的初始中心点,聚类准确率较高、误差平方和较小。 展开更多
关键词 K-MEANS算法 聚类中心 准确率 误差平方和
在线阅读 下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部