期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Zero Cost Function Training Algorithms for Three-Layered Feedforward Neural Networks
1
作者 Zhang, Daiyuan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2000年第2期32-38,共7页
In this paper, two theorems are proved for zero cost function (or precise I/O mapping) training algorithms about three-layered feedforward neural networks. Two training algorithms based on Moore-Penrose pseudoinverse ... In this paper, two theorems are proved for zero cost function (or precise I/O mapping) training algorithms about three-layered feedforward neural networks. Two training algorithms based on Moore-Penrose pseudoinverse (MPPI) matrix together with corresponding structure design guidelines are also proposed. 展开更多
关键词 learning algorithms learning systems Mathematical models Matrix algebra
在线阅读 下载PDF
Adaptive learning algorithm based on mixture Gaussian background 被引量:9
2
作者 Zha Yufei Bi Duyan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第2期369-376,共8页
The key problem of the adaptive mixture background model is that the parameters can adaptively change according to the input data. To address the problem, a new method is proposed. Firstly, the recursive equations are... The key problem of the adaptive mixture background model is that the parameters can adaptively change according to the input data. To address the problem, a new method is proposed. Firstly, the recursive equations are inferred based on the maximum likelihood rule. Secondly, the forgetting factor and learning rate factor are redefined, and their still more general formulations are obtained by analyzing their practical functions. Lastly, the convergence of the proposed algorithm is proved to enable the estimation converge to a local maximum of the data likelihood function according to the stochastic approximation theory. The experiments show that the proposed learning algorithm excels the formers both in converging rate and accuracy. 展开更多
关键词 Mixture Gaussian model Background model learning algorithm.
在线阅读 下载PDF
Learning-based force servoing control of a robot with vision in an unknown environment 被引量:2
3
作者 XiaoNanfeng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2004年第2期171-178,共8页
A learning-based control approach is presented for force servoing of a robot with vision in an unknown environment. Firstly, mapping relationships between image features of the servoing object and the joint angles of ... A learning-based control approach is presented for force servoing of a robot with vision in an unknown environment. Firstly, mapping relationships between image features of the servoing object and the joint angles of the robot are derived and learned by a neural network. Secondly, a learning controller based on the neural network is designed for the robot to trace the object. Thirdly, a discrete time impedance control law is obtained for the force servoing of the robot, the on-line learning algorithms for three neural networks are developed to adjust the impedance parameters of the robot in the unknown environment. Lastly, wiping experiments are carried out by using a 6 DOF industrial robot with a CCD camera and a force/torque sensor in its end effector, and the experimental results confirm the effecti veness of the approach. 展开更多
关键词 ROBOTICS force servoing vision control learning algorithm neural network.
在线阅读 下载PDF
Volterra Feedforward Neural Networks:Theory and Algorithms 被引量:3
4
作者 Jiao Lichengl Liu Fang & Xie Qin(National Lab. for Radar Signal Processing and Center for Neural Networks,Xidian University, Xian 710071, P.R.China) 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1996年第4期1-12,共12页
The Volterra feedforward neural network with nonlinear interconnections and related homotopy learning algorithm are proposed in the paper. It is shown that Volterra neural network and the homolopy learning algorithms ... The Volterra feedforward neural network with nonlinear interconnections and related homotopy learning algorithm are proposed in the paper. It is shown that Volterra neural network and the homolopy learning algorithms are significant potentials in nonlinear approximation ability,convergent speeds and global optimization than the classical neural networks and the standard BP algorithm, and related computer simulations and theoretical analysis are given too. 展开更多
关键词 Volterra neural networks Homotopy learning algorithm.
在线阅读 下载PDF
Causal constraint pruning for exact learning of Bayesian network structure 被引量:1
5
作者 TAN Xiangyuan GAO Xiaoguang +1 位作者 HE Chuchao WANG Zidong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第4期854-872,共19页
How to improve the efficiency of exact learning of the Bayesian network structure is a challenging issue.In this paper,four different causal constraints algorithms are added into score calculations to prune possible p... How to improve the efficiency of exact learning of the Bayesian network structure is a challenging issue.In this paper,four different causal constraints algorithms are added into score calculations to prune possible parent sets,improving state-ofthe-art learning algorithms’efficiency.Experimental results indicate that exact learning algorithms can significantly improve the efficiency with only a slight loss of accuracy.Under causal constraints,these exact learning algorithms can prune about 70%possible parent sets and reduce about 60%running time while only losing no more than 2%accuracy on average.Additionally,with sufficient samples,exact learning algorithms with causal constraints can also obtain the optimal network.In general,adding max-min parents and children constraints has better results in terms of efficiency and accuracy among these four causal constraints algorithms. 展开更多
关键词 Bayesian network structure learning exact learning algorithm causal constraint
在线阅读 下载PDF
FWNN for Interval Estimation with Interval Learning Algorithm
6
作者 Wang, Ling Liu, Fang Jiao, Licheng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1998年第1期56-66,共11页
In this paper, a wavelet based fuzzy neural network for interval estimation of processed data with its interval learning algorithm is proposed. It is also proved to be an efficient approach to calculate the wavelet c... In this paper, a wavelet based fuzzy neural network for interval estimation of processed data with its interval learning algorithm is proposed. It is also proved to be an efficient approach to calculate the wavelet coefficient. 展开更多
关键词 Fuzzy wavelet neural network (FWNN) Interval learning algorithm.
在线阅读 下载PDF
Enhancing reliability assessment of curved low-stiffness track-viaducts with an adaptive surrogate-based approach emphasizing track dynamic geometric state
7
作者 CHENG Fang LIU Hui YANG Rui 《Journal of Central South University》 CSCD 2024年第11期4262-4275,共14页
Traditional track dynamic geometric state(TDGS)simulation incurs substantial computational burdens,posing challenges for developing reliability assessment approach that accounts for TDGS.To overcome these,firstly,a si... Traditional track dynamic geometric state(TDGS)simulation incurs substantial computational burdens,posing challenges for developing reliability assessment approach that accounts for TDGS.To overcome these,firstly,a simulation-based TDGS model is established,and a surrogate-based model,grid search algorithm-particle swarm optimization-genetic algorithm-multi-output least squares support vector regression,is established.Among them,hyperparameter optimization algorithm’s effectiveness is confirmed through test functions.Subsequently,an adaptive surrogate-based probability density evolution method(PDEM)considering random track geometry irregularity(TGI)is developed.Finally,taking curved train-steel spring floating slab track-U beam as case study,the surrogate-based model trained on simulation datasets not only shows accuracy in both time and frequency domains,but also surpasses existing models.Additionally,the adaptive surrogate-based PDEM shows high accuracy and efficiency,outperforming Monte Carlo simulation and simulation-based PDEM.The reliability assessment shows that the TDGS part peak management indexes,left/right vertical dynamic irregularity,right alignment dynamic irregularity,and track twist,have reliability values of 0.9648,0.9918,0.9978,and 0.9901,respectively.The TDGS mean management index,i.e.,track quality index,has reliability value of 0.9950.These findings show that the proposed framework can accurately and efficiently assess the reliability of curved low-stiffness track-viaducts,providing a theoretical basis for the TGI maintenance. 展开更多
关键词 reliability assessment track dynamic geometric state hybrid machine learning algorithm adaptive learning strategy probability density evolution method
在线阅读 下载PDF
On-Line Real Time Realization and Application of Adaptive Fuzzy Inference Neural Network
8
作者 Han, Jianguo Guo, Junchao Zhao, Qian 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2000年第1期67-74,共8页
In this paper, a modeling algorithm developed by transferring the adaptive fuzzy inference neural network into an on-line real time algorithm, combining the algorithm with conventional system identification method and... In this paper, a modeling algorithm developed by transferring the adaptive fuzzy inference neural network into an on-line real time algorithm, combining the algorithm with conventional system identification method and applying them to separate identification of nonlinear multi-variable systems is introduced and discussed. 展开更多
关键词 Fuzzy control Identification (control systems) Inference engines learning algorithms Mathematical models Multivariable control systems Neural networks Nonlinear control systems Real time systems
在线阅读 下载PDF
Natural Gradient Approach to Multichannel Blind Deconvolution
9
作者 Zhang, Liqing Liu, Yongqing Li, Yuanqing 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2000年第1期22-31,共10页
In this paper we study the geometrical structures of FIR filters and their application to multichannel blind deconvolution. First we introduce a Lie group structure and a Riemannian structure on the manifolds of the F... In this paper we study the geometrical structures of FIR filters and their application to multichannel blind deconvolution. First we introduce a Lie group structure and a Riemannian structure on the manifolds of the FIR filters. Then we derive the natural gradients on the manifolds using the isometry of the Riemannian metric. Using the natural gradient, we present a novel learning algorithm for blind deconvolution based on the minimization of mutual information. Some properties of the learning algorithm, such as equivariance and stability are also studied. Finally, the simulations are given to illustrate the effectiveness and validity of the proposed algorithm. 展开更多
关键词 Communication channels (information theory) learning algorithms Signal filtering and prediction
在线阅读 下载PDF
A Wavelet-Based Fuzzy Neural Network for Interpolation of Fuzzy If-Then Rules 被引量:3
10
作者 Jiao Licheng Liu Fang Wang Ling & Zhang Yanning(State Key Lab. of RSP and Center for Neural Networks, Xidian University, Xi’an 710071, P. R. China) (This project was partly supported by the National Thud of Intercent. Expert and partly supported bythe 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1998年第4期65-74,共10页
In this paper, a wavelet-based fuzzy neural network with its structure and a learningalgorithm is proposed and the simulation results are given to prove its feasibility.
关键词 Fuzzy reasoning WBFRNN learning algorithm
在线阅读 下载PDF
A novel hybrid estimation of distribution algorithm for solving hybrid flowshop scheduling problem with unrelated parallel machine 被引量:10
11
作者 孙泽文 顾幸生 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第8期1779-1788,共10页
The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this wor... The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this work, a novel mathematic model for the hybrid flow shop scheduling problem with unrelated parallel machine(HFSPUPM) was proposed. Additionally, an effective hybrid estimation of distribution algorithm was proposed to solve the HFSPUPM, taking advantage of the features in the mathematic model. In the optimization algorithm, a new individual representation method was adopted. The(EDA) structure was used for global search while the teaching learning based optimization(TLBO) strategy was used for local search. Based on the structure of the HFSPUPM, this work presents a series of discrete operations. Simulation results show the effectiveness of the proposed hybrid algorithm compared with other algorithms. 展开更多
关键词 hybrid estimation of distribution algorithm teaching learning based optimization strategy hybrid flow shop unrelated parallel machine scheduling
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部