We consider the impulsive effect on the exponential synchronization of neural networks with leakage delay under the sampled-data feedback control. We use an appropriate Lyapunov-Krasovskii functional combined with the...We consider the impulsive effect on the exponential synchronization of neural networks with leakage delay under the sampled-data feedback control. We use an appropriate Lyapunov-Krasovskii functional combined with the input delay approach and some inequality techniques to derive sufficient conditions that ensure the exponential synchronization of the delayed neural network. The conditions are formulated in terms of the leakage delay, the sampling period, and the exponential convergence rate. Numerical examples are given to demonstrate the usefulness and the effectiveness of the results.展开更多
In this paper, the existence of almost periodic solutions to general BAM neural networks with leakage delays on time scales is first studied, by using the exponential dichotomy method of linear differential equations ...In this paper, the existence of almost periodic solutions to general BAM neural networks with leakage delays on time scales is first studied, by using the exponential dichotomy method of linear differential equations and fixed point theorem. Then, the exponential stability of almost periodic solutions to such BAM neural networks on time scales is discussed by utilizing differential inequality. Finally, an example is given to support our results in this paper and the results are up-to-date.展开更多
基金supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(Grant No.2013R1A1A2A10005201)the UAE University(Grant No.NRF Project UAEU-NRF-7-20886)
文摘We consider the impulsive effect on the exponential synchronization of neural networks with leakage delay under the sampled-data feedback control. We use an appropriate Lyapunov-Krasovskii functional combined with the input delay approach and some inequality techniques to derive sufficient conditions that ensure the exponential synchronization of the delayed neural network. The conditions are formulated in terms of the leakage delay, the sampling period, and the exponential convergence rate. Numerical examples are given to demonstrate the usefulness and the effectiveness of the results.
基金Partially supported by the Special Basic Cooperative Research Programs of Yunnan Provincial Undergraduate Universities'Association(Grant No.202101BA070001-045).
文摘In this paper, the existence of almost periodic solutions to general BAM neural networks with leakage delays on time scales is first studied, by using the exponential dichotomy method of linear differential equations and fixed point theorem. Then, the exponential stability of almost periodic solutions to such BAM neural networks on time scales is discussed by utilizing differential inequality. Finally, an example is given to support our results in this paper and the results are up-to-date.