A field experiment was conducted to elucidate the regulation mechanism of different irrigation schedules on population photosynthetic of winter wheat. The experiment included five irrigation schedules, such as no irri...A field experiment was conducted to elucidate the regulation mechanism of different irrigation schedules on population photosynthetic of winter wheat. The experiment included five irrigation schedules, such as no irrigation (W0), irrigation once at jointing (W1j) or at booting (W1b), irrigation twice at jointing and booting (W2), and irrigation three times at jointing, booting and grain-filling (W3) and three planting densities, such as 180 (D1), 300 (D2) and 450 (D3) seedlings per square meter. The results indicated that irrigation significantly improved population photosynthesis. The relationship between population photosynthesis and irrigation time/volume was to some extent parabolic. Improvements in population photosynthesis (resulting from more irrigation time/volume) were mainly related to increase in leaf area index and population light interception. Population photosynthesis exhibited a significantly negative correlation with canopy light transmittance. Population photosynthesis at grain filling stage was significantly positively correlated with dry matter accumulation at post-anthesis and grain yield. Main effects and partial correlation analysis showed that population photosynthesis of W0, W1j, W1b and W3 were regulated by canopy light transmittance and leaf area. On the other hand, population photosynthesis of W2 was mainly influenced by flag leaf photosynthetic rate. On this basis, planting 300 seedlings per square meter was the optimum combination. The combination of W2D2 increased population photosynthesis during mid-late growth stages and extended high population photosynthesis duration, which ultimately increased grain yield.展开更多
In order to improve the accuracy of biophysical parameters retrieved from remotely sensing data, a new algorithm was presented by using spatial contextual to estimate canopy variables from high-resolution remote sensi...In order to improve the accuracy of biophysical parameters retrieved from remotely sensing data, a new algorithm was presented by using spatial contextual to estimate canopy variables from high-resolution remote sensing images. The developed algorithm was used for inversion of leaf area index (LAI) from Enhanced Thematic Mapper Plus (ETM+) data by combining with optimization method to minimize cost functions. The results show that the distribution of LAI is spatially consistent with the false composition imagery from ETM+ and the accuracy of LAI is significantly improved over the results retrieved by the conventional pixelwise retrieval methods, demonstrating that this method can be reliably used to integrate spatial contextual information for inverting LAI from high-resolution remote sensing images.展开更多
common maize synthetic rate( Photosynthetic characteristics were probed by sweet maize, waxy maize, high starch maize and The results revealed that leaf area index (LAI), chlorophyll a content, chlorophyll b cont...common maize synthetic rate( Photosynthetic characteristics were probed by sweet maize, waxy maize, high starch maize and The results revealed that leaf area index (LAI), chlorophyll a content, chlorophyll b content,photo-PR) showed single peak curve at the whole growth stage. The stages of peak were different according to different varieties. NEAUS4 had the lowest peak and while SIDAN 19 had the highest among all stages. Ratio of chlorophyll a to b was low at seedling stage, reached the peak atjointing stage and then declined. SIDAN 19 had the lower level at the last stages.展开更多
基金Supported by China and CAS Main Direction Program of Knowledge Innovation (KSCX2-EW-B-1)China and CAS Knowledge Innovation Project(KSCX1-YW-09-06)
文摘A field experiment was conducted to elucidate the regulation mechanism of different irrigation schedules on population photosynthetic of winter wheat. The experiment included five irrigation schedules, such as no irrigation (W0), irrigation once at jointing (W1j) or at booting (W1b), irrigation twice at jointing and booting (W2), and irrigation three times at jointing, booting and grain-filling (W3) and three planting densities, such as 180 (D1), 300 (D2) and 450 (D3) seedlings per square meter. The results indicated that irrigation significantly improved population photosynthesis. The relationship between population photosynthesis and irrigation time/volume was to some extent parabolic. Improvements in population photosynthesis (resulting from more irrigation time/volume) were mainly related to increase in leaf area index and population light interception. Population photosynthesis exhibited a significantly negative correlation with canopy light transmittance. Population photosynthesis at grain filling stage was significantly positively correlated with dry matter accumulation at post-anthesis and grain yield. Main effects and partial correlation analysis showed that population photosynthesis of W0, W1j, W1b and W3 were regulated by canopy light transmittance and leaf area. On the other hand, population photosynthesis of W2 was mainly influenced by flag leaf photosynthetic rate. On this basis, planting 300 seedlings per square meter was the optimum combination. The combination of W2D2 increased population photosynthesis during mid-late growth stages and extended high population photosynthesis duration, which ultimately increased grain yield.
基金Project(2007CB714407) supported by the Major State Basic Research and Development Program of ChinaProject(2004DFA06300) supported by Key International Collaboration Project in Science and TechnologyProjects(40571107, 40701102) supported by the National Natural Science Foundation of China
文摘In order to improve the accuracy of biophysical parameters retrieved from remotely sensing data, a new algorithm was presented by using spatial contextual to estimate canopy variables from high-resolution remote sensing images. The developed algorithm was used for inversion of leaf area index (LAI) from Enhanced Thematic Mapper Plus (ETM+) data by combining with optimization method to minimize cost functions. The results show that the distribution of LAI is spatially consistent with the false composition imagery from ETM+ and the accuracy of LAI is significantly improved over the results retrieved by the conventional pixelwise retrieval methods, demonstrating that this method can be reliably used to integrate spatial contextual information for inverting LAI from high-resolution remote sensing images.
文摘common maize synthetic rate( Photosynthetic characteristics were probed by sweet maize, waxy maize, high starch maize and The results revealed that leaf area index (LAI), chlorophyll a content, chlorophyll b content,photo-PR) showed single peak curve at the whole growth stage. The stages of peak were different according to different varieties. NEAUS4 had the lowest peak and while SIDAN 19 had the highest among all stages. Ratio of chlorophyll a to b was low at seedling stage, reached the peak atjointing stage and then declined. SIDAN 19 had the lower level at the last stages.