The Baoshan Cu-Pb-Zn polymetallic deposit is lied in the central Nanling mineralization zone,and belongs to the junction area of the Chenzhou-Linwu fault zone and the Leiyang-Linwu fault zone.It is a significant part ...The Baoshan Cu-Pb-Zn polymetallic deposit is lied in the central Nanling mineralization zone,and belongs to the junction area of the Chenzhou-Linwu fault zone and the Leiyang-Linwu fault zone.It is a significant part of Nanling polymetallic deposit belt.The outcropping stratas consist of upper Devonian Shetianqiao,Xikuangshan Formation,Lower Carboniferous Menggong’ao,Shidengzi,Ceshui,and Zimenqiao Formation.Igneous rocks in the Baoshan ore area mainly comprise granodiorite porphyry.Furthermore,the radio isotopic age ranges from 123 Ma to 183 Ma,belonging to the early to middle Yanshanian.展开更多
No. 22 ore of Dafulou deposit was systematically analyzed for sulfur isotopes. The results show that the δ34S values of sulfide minerals, ranging from 0.154 to +0.218% and with an average value of +0.114 1%, are most...No. 22 ore of Dafulou deposit was systematically analyzed for sulfur isotopes. The results show that the δ34S values of sulfide minerals, ranging from 0.154 to +0.218% and with an average value of +0.114 1%, are mostly positive and characterized by rich sulfur(S) content. This suggests that the sulfur of the Dafulou ore deposit is derived from magma and relates to the Longxianggai concealed granite, which points to the important role of magma during mineralization and implyies the product of the active continental margin. By comparison between the Dafulou and the Kengma tin deposit, significant differences exist in the sulfur isotope composition. In the Kengma deposit, the sulfur isotope composition is characterized by the high negative value, which is different from the Dafulou tin-polymetallic deposit. The difference of the enrichment and fractionation of the sulfur isotope is the synthesized result of the metallogenic conditions. It also has the difference in the metallogenic environment and metallogenic characteristics of the deposit in the same ore belt.展开更多
The Nage Cu-Pb polymetallic deposit is located in the transitional zone of the Yangtze craton and cathaysia,that is the southwest of Jiangnan orogenic belt. The mainly strata are Wentong formation of Mesoproterozoic S...The Nage Cu-Pb polymetallic deposit is located in the transitional zone of the Yangtze craton and cathaysia,that is the southwest of Jiangnan orogenic belt. The mainly strata are Wentong formation of Mesoproterozoic Sibo group and the Jialu formation(Qbj) ,Wuye formation(Qbw) ,Fanzhao formation(Qbf) and Gongdong formation(Qbg) of the Neoproterozoic Qingbaikou System Xiajiang group.展开更多
1 Geology Daolundaba copper polymetallic deposit occurs in West Ujimqin Banner,the Xilin Gol League of Inner Mongolia,along the west side of South part of Daxinganling ore belt,whose tectonic position just lies at the...1 Geology Daolundaba copper polymetallic deposit occurs in West Ujimqin Banner,the Xilin Gol League of Inner Mongolia,along the west side of South part of Daxinganling ore belt,whose tectonic position just lies at the junction of Siberian Block in the south part,North China Block in the north and Songliao block in the east.The Daolundaba copper polymetallic deposit is hosted by the Lower Proterozoic Baoyintu group of biotite-plagioclase gneiss(Pt1by),upper Permian Linxi formation of sandy slate(P2l),and the Hercynian Qianjinchang pluton of biotite granite.展开更多
The Shilu Fe-polymetallic ore deposit,a famous hematite-rich Fe-ore deposit,is situated at the western Hainan Province of south China.The deposit characterizes the upper Fe ores and the lower Co-Cu ores,which are main...The Shilu Fe-polymetallic ore deposit,a famous hematite-rich Fe-ore deposit,is situated at the western Hainan Province of south China.The deposit characterizes the upper Fe ores and the lower Co-Cu ores,which are mainly hosted within a low-grade to medium-grade,dominantly submarine metamorphosed siliciclastic and carbonate sedimentary succession of the Neoproterozoic Shilu Group.Three facies types of metamorphosed BIFs,i.e.the oxide facies,the silicate-oxide facies and the sulfide-carbonate facies BIFs,are identified within the sixth sequence of the Shilu Group.The oxide facies BIF(i.e.the Fe-rich itabirites or ores)consists of alternating hematite-rich microbands with quartz-rich microbands;the silicate-oxide facies BIF(i.e.the Fe-poor itabirites or ores)comprises alternating millimeter-to a few tens meter-scale,magnetite-hematite-rich bands with calcsilicate-rich(garnet+actinolite+diopside+epidote+quartz)meso-to microbands;and the sulfide-carbonate facies BIF(i.e.the Co-Cu ores)contains alternating macro-to mesobands of Co-bearing pyrite and pyrrhotite,and chalcopyrite with mesobands of dolomite+calcite+diopside+quartz and/or chlorite+sericite+quartz.The blastooolitic,blastopelletoid blastocolloidal and blastopsammitic textures,and blasobedding structures which most likely represent primary sedimentation are often observed in these BIF facies.The interbedded host rocks with the BIFs mainly are the pyroxene-amphibole rocks and the banded or impure dolostones,and also contain banded or laminated structures,and lepido-gra-noblastic,nematoblastic and/or blastoclastic textures.Compositionally,the main host rocks,the pyroxene-amphibole rocks contain basic-intermediate SiO_2(~54.00 wt.%),CaO(~14.19 wt.%),MgO(~9.68 wt.%)and Al_2O_3(~8.49 wt.%)with a positive correlation between Al_2O_3 and TiO_2.The UCC-like Zr and Hf abundances,high Ba content andεNd(t)value(^-5.99)as well as the ratios of La/YbPAAS(0.17~1.00),δEuPAAS(0.88~1.12)andδCePAAS(0.93~1.13)commonly reveal that the protoliths to this type rocks are hydrogenic with a large contribution of terrigenous sediments and minor hydrothermal input.The high CaO+MgO+LOI contents and the extremely low trace element and REEconcentrations as well as the ratios of Y/Ho(44~45),δEuPAAS(1.13~1.57)andδCePAAS(0.69~0.98)reflect a marine origin with minor terrigenous materials for the banded or impure dolostones.Moreover,this type rocks also account for a negativeεNd(t)value(^-7.49).The oxide facies BIF is dominated by Fe_2O_3+FeO(~75.59wt.%)and SiO_2(~20.47 wt.%)with aεNd(t)value of^-6.10.The variable contents in Al_2O_3,TiO 2,K2O,Na2O,Zr,Hf and∑REE,and variable ratios of Y/Ho(24~39)andδEuPAAS(0.86~11.07)suggest the precursor sediments to this facies BIF are admixtures of sea-floor hydrothermal fluids and seawaters with minor involvement of detrital components.Compared to the oxide facies BIF,the silicate-oxide facies BIF is lower in Fe_2O_3+Fe O(~39.81wt.%)and Ba but higher in SiO_2(~42.54 wt.%),Al2O3(~3.60 wt.%),TiO_2(~0.19 wt.%),MgO(~1.12 wt.%),CaO(~9.06 wt.%),K_2O(~0.98 wt.%),Mn and Zr.The ratios of Y/Ho(25~34),La/YbPAAS(0.14-0.74)andδEuPAAS(0.91~1.12)most likely are linked to higher degree of detrital contamintants.While the sulfide-caronate facies BIF is main but variable in Fe_2O_3+Fe O(15.79~57.91 wt.%),SiO 2(0.54~61.52 wt.%),MgO(0.12~16.09wt.%),CaO(0.17~23.41 wt.%)and LOI(8.28-30.06 wt.%).The generally low contents in trace elements(including REE)except for an obvious enrichment in Pb,and the positive Ce anomalies(δCePAAS=1.04~1.95)and negative Pr anomalies(δPrPAAS=0.67~0.93),as well as the variable ratios ofδEuPAAS(0.72~1.71),La/YbPAAS(0.26~1.60)and Y/Ho(26~57)suggest that the precursors to the sulfide-carbonate facies BIF mainly are metalliferious sediments from deep-marine hydrotheral source with minor detrital components.The T2DM ages(ca.2.0 Ga)imply that the Shilu BIFs and interbedded host rocks contain a component with Paleoproterozoic crustal residence age due to a significant crustal accretion event at ca.2.0 Ga in Hainan Island.In connection with the petrographical and mineralogical relationship,we conclude that the precursor precipitates to the Shilu BIFs are variable degree of admixtures of the Fe-Co-Cu-(Si)-rich hydrothermal fluids and detrital components from seawater and fresh water carring continental landmass;whereas the protolith to the main interbedded host rocks,i.e.the pyroxene-amphibole rocks,most likely was terrigenous,fine-grained clastic-sediments but with significant input of hydrothermal fluids in a seawater environment.As a result,a continent marginal marine basin is proposed for deposition of the Shilu BIFs and interbedded host rocks.Sea-level fluctuations caused by marine transgression–regressions possibly contributed to changes in the composition and varied input of the terrigenous sediments.展开更多
The Yulong supper\|large copper deposit is situated within the well\|known S\|N striking Yulong copper\|molybdenum ore belt. The ore\|bearing biotite\|monogranitic porphyry was emplaced within clastic rocks (mainly sh...The Yulong supper\|large copper deposit is situated within the well\|known S\|N striking Yulong copper\|molybdenum ore belt. The ore\|bearing biotite\|monogranitic porphyry was emplaced within clastic rocks (mainly shales and siltstones) of the Jiapila Formation (T 3 j ) and carbonate rocks of the Bolila Formation (T 3 b ) of the Upper Triassic. Five mineralization patterns have been recognized in the deposit, i.e., ①veinlet\|disseminated Cu\|Mo ore in the porphyry; ②skarn\|type Cu ore at the contact zone with carbonates (T 3 b ); ③stratiform\|like oxidized Cu ore between T 3 b carbonate rocks and T 3 j hornstones; ④brecciated Cu ore at the local periphery of porphyry; and ⑤vein Pb\|Zn\|Ag ore in the outer contact zone. They constitute a unique integrated polymetal mineralization series of epigenetic intermediate\|acid magmatic hydrothermal system.Studies have shown that the Yulong deposit was the coupling product of sedimentation, magmatism, and tectonism. The Cu\|bearing sandstones in the Japila Formation have provided partial ore\|bearing materials for the porphyry mineralization during the Himalayan period. The mineralized porphyry mass was passively emplaced and controlled by a nose\|like anticlinal trap opening to the north. The interlayered fractured zone formed during folding between the Jiapila and Bolila Formations acted as favorable host space for stratiform\|like skarn and oxidized ores. A large number of cleavages and fissures developed during folding provided both conduits for the circulation of ore\|forming fluids and host spaces for Pb\|Zn\|Ag ore veins. The veinlet\|disseminated Cu\|Mo ore in the porphyry mass owns the characteristics of typical porphyry copper deposits in the world. The veinlet\|disseminated ore body and the stratiform\|like skarn\|type and/or oxidized ore body, the two main ore bodies in Yulong, are connected with each other and shown as “mushroom\|like" shape, in which the former occurs as “mushroom stem" and the latter as “mushroom cover".展开更多
基金Supported by the Program of Superseding Resources Prospecting in Crisis Mines in China(20089927)
文摘The Baoshan Cu-Pb-Zn polymetallic deposit is lied in the central Nanling mineralization zone,and belongs to the junction area of the Chenzhou-Linwu fault zone and the Leiyang-Linwu fault zone.It is a significant part of Nanling polymetallic deposit belt.The outcropping stratas consist of upper Devonian Shetianqiao,Xikuangshan Formation,Lower Carboniferous Menggong’ao,Shidengzi,Ceshui,and Zimenqiao Formation.Igneous rocks in the Baoshan ore area mainly comprise granodiorite porphyry.Furthermore,the radio isotopic age ranges from 123 Ma to 183 Ma,belonging to the early to middle Yanshanian.
基金Project(41202051) supported by the National Natural Science Foundation of ChinaProject(2012M521721) supported by China Postdoctoral Science FoundationProject(CSUZC2013021) supported by Valuable Equipment Open Sharing Fund of Central South University,China
文摘No. 22 ore of Dafulou deposit was systematically analyzed for sulfur isotopes. The results show that the δ34S values of sulfide minerals, ranging from 0.154 to +0.218% and with an average value of +0.114 1%, are mostly positive and characterized by rich sulfur(S) content. This suggests that the sulfur of the Dafulou ore deposit is derived from magma and relates to the Longxianggai concealed granite, which points to the important role of magma during mineralization and implyies the product of the active continental margin. By comparison between the Dafulou and the Kengma tin deposit, significant differences exist in the sulfur isotope composition. In the Kengma deposit, the sulfur isotope composition is characterized by the high negative value, which is different from the Dafulou tin-polymetallic deposit. The difference of the enrichment and fractionation of the sulfur isotope is the synthesized result of the metallogenic conditions. It also has the difference in the metallogenic environment and metallogenic characteristics of the deposit in the same ore belt.
基金National Basic Research Program of China(No.2007CB411402)Cooperation Program of Institute of Geochemistry and Guizhou Geology and Minerals Bureau 102 Geology Group
文摘The Nage Cu-Pb polymetallic deposit is located in the transitional zone of the Yangtze craton and cathaysia,that is the southwest of Jiangnan orogenic belt. The mainly strata are Wentong formation of Mesoproterozoic Sibo group and the Jialu formation(Qbj) ,Wuye formation(Qbw) ,Fanzhao formation(Qbf) and Gongdong formation(Qbg) of the Neoproterozoic Qingbaikou System Xiajiang group.
文摘1 Geology Daolundaba copper polymetallic deposit occurs in West Ujimqin Banner,the Xilin Gol League of Inner Mongolia,along the west side of South part of Daxinganling ore belt,whose tectonic position just lies at the junction of Siberian Block in the south part,North China Block in the north and Songliao block in the east.The Daolundaba copper polymetallic deposit is hosted by the Lower Proterozoic Baoyintu group of biotite-plagioclase gneiss(Pt1by),upper Permian Linxi formation of sandy slate(P2l),and the Hercynian Qianjinchang pluton of biotite granite.
文摘The Shilu Fe-polymetallic ore deposit,a famous hematite-rich Fe-ore deposit,is situated at the western Hainan Province of south China.The deposit characterizes the upper Fe ores and the lower Co-Cu ores,which are mainly hosted within a low-grade to medium-grade,dominantly submarine metamorphosed siliciclastic and carbonate sedimentary succession of the Neoproterozoic Shilu Group.Three facies types of metamorphosed BIFs,i.e.the oxide facies,the silicate-oxide facies and the sulfide-carbonate facies BIFs,are identified within the sixth sequence of the Shilu Group.The oxide facies BIF(i.e.the Fe-rich itabirites or ores)consists of alternating hematite-rich microbands with quartz-rich microbands;the silicate-oxide facies BIF(i.e.the Fe-poor itabirites or ores)comprises alternating millimeter-to a few tens meter-scale,magnetite-hematite-rich bands with calcsilicate-rich(garnet+actinolite+diopside+epidote+quartz)meso-to microbands;and the sulfide-carbonate facies BIF(i.e.the Co-Cu ores)contains alternating macro-to mesobands of Co-bearing pyrite and pyrrhotite,and chalcopyrite with mesobands of dolomite+calcite+diopside+quartz and/or chlorite+sericite+quartz.The blastooolitic,blastopelletoid blastocolloidal and blastopsammitic textures,and blasobedding structures which most likely represent primary sedimentation are often observed in these BIF facies.The interbedded host rocks with the BIFs mainly are the pyroxene-amphibole rocks and the banded or impure dolostones,and also contain banded or laminated structures,and lepido-gra-noblastic,nematoblastic and/or blastoclastic textures.Compositionally,the main host rocks,the pyroxene-amphibole rocks contain basic-intermediate SiO_2(~54.00 wt.%),CaO(~14.19 wt.%),MgO(~9.68 wt.%)and Al_2O_3(~8.49 wt.%)with a positive correlation between Al_2O_3 and TiO_2.The UCC-like Zr and Hf abundances,high Ba content andεNd(t)value(^-5.99)as well as the ratios of La/YbPAAS(0.17~1.00),δEuPAAS(0.88~1.12)andδCePAAS(0.93~1.13)commonly reveal that the protoliths to this type rocks are hydrogenic with a large contribution of terrigenous sediments and minor hydrothermal input.The high CaO+MgO+LOI contents and the extremely low trace element and REEconcentrations as well as the ratios of Y/Ho(44~45),δEuPAAS(1.13~1.57)andδCePAAS(0.69~0.98)reflect a marine origin with minor terrigenous materials for the banded or impure dolostones.Moreover,this type rocks also account for a negativeεNd(t)value(^-7.49).The oxide facies BIF is dominated by Fe_2O_3+FeO(~75.59wt.%)and SiO_2(~20.47 wt.%)with aεNd(t)value of^-6.10.The variable contents in Al_2O_3,TiO 2,K2O,Na2O,Zr,Hf and∑REE,and variable ratios of Y/Ho(24~39)andδEuPAAS(0.86~11.07)suggest the precursor sediments to this facies BIF are admixtures of sea-floor hydrothermal fluids and seawaters with minor involvement of detrital components.Compared to the oxide facies BIF,the silicate-oxide facies BIF is lower in Fe_2O_3+Fe O(~39.81wt.%)and Ba but higher in SiO_2(~42.54 wt.%),Al2O3(~3.60 wt.%),TiO_2(~0.19 wt.%),MgO(~1.12 wt.%),CaO(~9.06 wt.%),K_2O(~0.98 wt.%),Mn and Zr.The ratios of Y/Ho(25~34),La/YbPAAS(0.14-0.74)andδEuPAAS(0.91~1.12)most likely are linked to higher degree of detrital contamintants.While the sulfide-caronate facies BIF is main but variable in Fe_2O_3+Fe O(15.79~57.91 wt.%),SiO 2(0.54~61.52 wt.%),MgO(0.12~16.09wt.%),CaO(0.17~23.41 wt.%)and LOI(8.28-30.06 wt.%).The generally low contents in trace elements(including REE)except for an obvious enrichment in Pb,and the positive Ce anomalies(δCePAAS=1.04~1.95)and negative Pr anomalies(δPrPAAS=0.67~0.93),as well as the variable ratios ofδEuPAAS(0.72~1.71),La/YbPAAS(0.26~1.60)and Y/Ho(26~57)suggest that the precursors to the sulfide-carbonate facies BIF mainly are metalliferious sediments from deep-marine hydrotheral source with minor detrital components.The T2DM ages(ca.2.0 Ga)imply that the Shilu BIFs and interbedded host rocks contain a component with Paleoproterozoic crustal residence age due to a significant crustal accretion event at ca.2.0 Ga in Hainan Island.In connection with the petrographical and mineralogical relationship,we conclude that the precursor precipitates to the Shilu BIFs are variable degree of admixtures of the Fe-Co-Cu-(Si)-rich hydrothermal fluids and detrital components from seawater and fresh water carring continental landmass;whereas the protolith to the main interbedded host rocks,i.e.the pyroxene-amphibole rocks,most likely was terrigenous,fine-grained clastic-sediments but with significant input of hydrothermal fluids in a seawater environment.As a result,a continent marginal marine basin is proposed for deposition of the Shilu BIFs and interbedded host rocks.Sea-level fluctuations caused by marine transgression–regressions possibly contributed to changes in the composition and varied input of the terrigenous sediments.
文摘The Yulong supper\|large copper deposit is situated within the well\|known S\|N striking Yulong copper\|molybdenum ore belt. The ore\|bearing biotite\|monogranitic porphyry was emplaced within clastic rocks (mainly shales and siltstones) of the Jiapila Formation (T 3 j ) and carbonate rocks of the Bolila Formation (T 3 b ) of the Upper Triassic. Five mineralization patterns have been recognized in the deposit, i.e., ①veinlet\|disseminated Cu\|Mo ore in the porphyry; ②skarn\|type Cu ore at the contact zone with carbonates (T 3 b ); ③stratiform\|like oxidized Cu ore between T 3 b carbonate rocks and T 3 j hornstones; ④brecciated Cu ore at the local periphery of porphyry; and ⑤vein Pb\|Zn\|Ag ore in the outer contact zone. They constitute a unique integrated polymetal mineralization series of epigenetic intermediate\|acid magmatic hydrothermal system.Studies have shown that the Yulong deposit was the coupling product of sedimentation, magmatism, and tectonism. The Cu\|bearing sandstones in the Japila Formation have provided partial ore\|bearing materials for the porphyry mineralization during the Himalayan period. The mineralized porphyry mass was passively emplaced and controlled by a nose\|like anticlinal trap opening to the north. The interlayered fractured zone formed during folding between the Jiapila and Bolila Formations acted as favorable host space for stratiform\|like skarn and oxidized ores. A large number of cleavages and fissures developed during folding provided both conduits for the circulation of ore\|forming fluids and host spaces for Pb\|Zn\|Ag ore veins. The veinlet\|disseminated Cu\|Mo ore in the porphyry mass owns the characteristics of typical porphyry copper deposits in the world. The veinlet\|disseminated ore body and the stratiform\|like skarn\|type and/or oxidized ore body, the two main ore bodies in Yulong, are connected with each other and shown as “mushroom\|like" shape, in which the former occurs as “mushroom stem" and the latter as “mushroom cover".