Forced aeration is an effective way to accelerate the heap bioleaching process.To reveal the effects of different irrigation and aeration combinations on bioleaching performance of copper sulfides,numerical simulation...Forced aeration is an effective way to accelerate the heap bioleaching process.To reveal the effects of different irrigation and aeration combinations on bioleaching performance of copper sulfides,numerical simulations with COMSOL were carried out.Results showed the oxygen concentration is the highest at the bottom with forced aeration,the airflow transports spherically from the aeration pipeline to the slope,and the horizontal diffusion distance is further than vertical value.When the irrigation-to-aeration ratio is higher,the average heap temperatures are mainly decided by aeration rates;otherwise,temperature distributions are the equilibrium of mineral reaction heat,the livixiant driven heat and the airflow driven heat.When the aeration rate is higher than 0.90 m3/(m2·h),oxygen concentration is no longer a limiting factor for mineral dissolution.Additionally,on the premise of sufficient oxygen supply,Cu recovery rate is higher at the bottom with low irrigation rate;while it is higher at upper regions with high irrigation rate.The numerical analysis uncovered some insights into the dynamics and thermodynamics rules in bioleaching of copper sulfides with forced aeration.展开更多
A batch of column experiments was carried out to investigate the change of Cr(Ⅵ) concentration leached out from chromium-containing slag with HCI as leaching agent, and to study influences of pH, ratio of solid mas...A batch of column experiments was carried out to investigate the change of Cr(Ⅵ) concentration leached out from chromium-containing slag with HCI as leaching agent, and to study influences of pH, ratio of solid mass to solution volume, flow velocity and temperature on Cr(Ⅵ) leaching. The optimal parameters were obtained for Cr(Ⅵ) leaching and a fitting model was established to describe the procedure of Cr(Ⅵ) leaching. The results show that Cr(Ⅵ) concentration in leachate increases with decreasing pH and increasing flow velocity and temperature. Moreover, Cr(Ⅵ) leaching percentage increases with increasing ratio of solid mass to solution volume. The optimal parameters for Cr(Ⅵ) selective leaching are as follows: pH=3.0, 1:5 of ratio of solid mass to solution volume, 180 mL/min of flow velocity and 40 ℃ of temperature. The procedure of Cr(Ⅵ) leaching fits well with the model: v= 1.87t^-0.54, indicating that the leaching rate of Cr(Ⅵ) declines in an exponential order of-0.54.展开更多
The effect of mineral particle size, pulp potential and category of oxidant on pyrite leaching was studied. The results show that a smaller mineral particle size leads to a higher leaching rate of pyrite, and the opti...The effect of mineral particle size, pulp potential and category of oxidant on pyrite leaching was studied. The results show that a smaller mineral particle size leads to a higher leaching rate of pyrite, and the optimum result with pyrite leaching rate of 2.92% is obtained when mineral particle size is less than 0.037 mm. The pulp potential reflects the leaching process. The increase of pulp potential can improve pyrite leaching. The leaching rate and velocity of pyrite can be enhanced rapidly by adding strong oxidant. The kind and the method of adding oxidant have important effect on the pyrite leaching. Appropriate concentration of Fe3+ can enhance pyrite leaching but the precipitation generated by high concentration of ferric ion covers the surface of pyrites and prevents the leaching process. The leaching rate increases with the constant addition of H2O2.展开更多
A new technology was developed to recover multiple valuable elements from the spent Al2O3-based catalyst by X-ray phase analysis and exploratory experiments. The experimental results show that in the condition of roas...A new technology was developed to recover multiple valuable elements from the spent Al2O3-based catalyst by X-ray phase analysis and exploratory experiments. The experimental results show that in the condition of roasting temperature of 750℃ and roasting time of 30 min, molar ratio of Na2O to Al2O3 of 1.2, the leaching rates of alumina, vanadium and molybdenum in the spent catalyst are 97.2%, 95.8% and 98.9%, respectively. Vanadium and molybdenum in sodium aluminate solution can be recovered by precipitators A and B, and the precipitation rates of vanadium and molybdenum are 94.8% and 92.6%. Al(OH)3 was prepared from sodium aluminate solution in the carbonation decomposition process, and the purity of Al2O3 is 99.9% after calcination, the recovery of alumina reaches 90.6% in the whole process; the Ni-Co concentrate was leached by sulfuric acid, a nickel recovery of 98.2% and cobalt recovery over 98.5% can be obtained under the experimental condition of 30% H2SO4, 80℃, reaction time 4 h, mass ratio of liquid to solid 8, stirring rate 800r/min.展开更多
基金Projects(51804079,51804121)supported by the National Natural Science Foundation of ChinaProject(2019J05039)supported by Natural Science Foundation of Fujian Province,ChinaProject(2019T034)supported by Fuzhou University Testing Fund of Precious Apparatus,China。
文摘Forced aeration is an effective way to accelerate the heap bioleaching process.To reveal the effects of different irrigation and aeration combinations on bioleaching performance of copper sulfides,numerical simulations with COMSOL were carried out.Results showed the oxygen concentration is the highest at the bottom with forced aeration,the airflow transports spherically from the aeration pipeline to the slope,and the horizontal diffusion distance is further than vertical value.When the irrigation-to-aeration ratio is higher,the average heap temperatures are mainly decided by aeration rates;otherwise,temperature distributions are the equilibrium of mineral reaction heat,the livixiant driven heat and the airflow driven heat.When the aeration rate is higher than 0.90 m3/(m2·h),oxygen concentration is no longer a limiting factor for mineral dissolution.Additionally,on the premise of sufficient oxygen supply,Cu recovery rate is higher at the bottom with low irrigation rate;while it is higher at upper regions with high irrigation rate.The numerical analysis uncovered some insights into the dynamics and thermodynamics rules in bioleaching of copper sulfides with forced aeration.
基金Projects(2006AA06Z374 2007AA021304) supported by the National High-Tech Research and Development Program of China
文摘A batch of column experiments was carried out to investigate the change of Cr(Ⅵ) concentration leached out from chromium-containing slag with HCI as leaching agent, and to study influences of pH, ratio of solid mass to solution volume, flow velocity and temperature on Cr(Ⅵ) leaching. The optimal parameters were obtained for Cr(Ⅵ) leaching and a fitting model was established to describe the procedure of Cr(Ⅵ) leaching. The results show that Cr(Ⅵ) concentration in leachate increases with decreasing pH and increasing flow velocity and temperature. Moreover, Cr(Ⅵ) leaching percentage increases with increasing ratio of solid mass to solution volume. The optimal parameters for Cr(Ⅵ) selective leaching are as follows: pH=3.0, 1:5 of ratio of solid mass to solution volume, 180 mL/min of flow velocity and 40 ℃ of temperature. The procedure of Cr(Ⅵ) leaching fits well with the model: v= 1.87t^-0.54, indicating that the leaching rate of Cr(Ⅵ) declines in an exponential order of-0.54.
基金Project(2004CB619204) supported by the National Key Fundamental Research and Development Program of ChinaProjects(50321402, 50574101) supported by the National Natural Science Foundation of China
文摘The effect of mineral particle size, pulp potential and category of oxidant on pyrite leaching was studied. The results show that a smaller mineral particle size leads to a higher leaching rate of pyrite, and the optimum result with pyrite leaching rate of 2.92% is obtained when mineral particle size is less than 0.037 mm. The pulp potential reflects the leaching process. The increase of pulp potential can improve pyrite leaching. The leaching rate and velocity of pyrite can be enhanced rapidly by adding strong oxidant. The kind and the method of adding oxidant have important effect on the pyrite leaching. Appropriate concentration of Fe3+ can enhance pyrite leaching but the precipitation generated by high concentration of ferric ion covers the surface of pyrites and prevents the leaching process. The leaching rate increases with the constant addition of H2O2.
基金Project(2003 UDBEA00C020) supported by the Collaborative Project of School and Province of Yunnan Province
文摘A new technology was developed to recover multiple valuable elements from the spent Al2O3-based catalyst by X-ray phase analysis and exploratory experiments. The experimental results show that in the condition of roasting temperature of 750℃ and roasting time of 30 min, molar ratio of Na2O to Al2O3 of 1.2, the leaching rates of alumina, vanadium and molybdenum in the spent catalyst are 97.2%, 95.8% and 98.9%, respectively. Vanadium and molybdenum in sodium aluminate solution can be recovered by precipitators A and B, and the precipitation rates of vanadium and molybdenum are 94.8% and 92.6%. Al(OH)3 was prepared from sodium aluminate solution in the carbonation decomposition process, and the purity of Al2O3 is 99.9% after calcination, the recovery of alumina reaches 90.6% in the whole process; the Ni-Co concentrate was leached by sulfuric acid, a nickel recovery of 98.2% and cobalt recovery over 98.5% can be obtained under the experimental condition of 30% H2SO4, 80℃, reaction time 4 h, mass ratio of liquid to solid 8, stirring rate 800r/min.