Laser induced breakdown Spectroscopy(LIBS)was applied for the elemental analysis and exposure of the heavy metals in betel leaves in air.Pulsed Nd∶YAG(1064 nm)in conjunction with a suitable detector(LIBS 2000+,Ocean ...Laser induced breakdown Spectroscopy(LIBS)was applied for the elemental analysis and exposure of the heavy metals in betel leaves in air.Pulsed Nd∶YAG(1064 nm)in conjunction with a suitable detector(LIBS 2000+,Ocean Optics,Inc)having the optical resolution of 0.06 nm was used to record the emission spectra from 220 to 720 nm.Elements like Al,Ba,Ca,Cr,Cu,P,Fe,K,Mg,Mn,Na,P,S,Sr,and Zn were found to present in the samples.The relative abundances of the observed elements were calculated through standard calibration curve method,integrated intensity ratio method,and weight percentage LIBS approach.LIBS findings were validated by comparing its results with the results obtained using a typical analytical technique of Inductively Coupled plasma-optical emission spectroscopy(ICP-OES).Limit of detection(LOD)of the LIBS system was also estimated for heavy metals.The experience gain through this work implies that LIBS could be highly applicable for testing the quality and purity of food products.展开更多
Pearlitic ductile irons(PDIs)are used in transportation and nuclear energy industries.In heavy loading situation,the service life of PDI is affected by numerous tribo aspects.In this study,surface of the PDI is alloye...Pearlitic ductile irons(PDIs)are used in transportation and nuclear energy industries.In heavy loading situation,the service life of PDI is affected by numerous tribo aspects.In this study,surface of the PDI is alloyed with WC-12%Co powder using a high power fibre laser.The wear properties of the base material and laser alloying samples were investigated by tribometer with various parameters,i.e.,temperature,load and sliding speed.Based on experimental test,the load has maximum percentage of contribution and followed by sliding speed and working temperature.The optimized tribological parameters by Grey relational analysis(GRA)were established and those values are closely matched with predicted values.Besides,base material and laser alloying surfaces were examined through Vickers hardness machine,scanning electron microscopy(SEM)and roughness tester.The laser altered specimen shows no defects and improves the wear properties than substrates.The identified optimal tribological parameters are load of 30 N,speed of 0.5 m/s and working temperature of 300℃,and load of 30 N,speed of 0.5 m/s and working temperature of 200℃ for base metal and laser alloying samples,respectively.展开更多
Ideally, to achieve optimal production in agriculture, crop stress needs to be measured in real-time, and plant inputs managed in response. However, many important physiological responses like photosynthesis are diffi...Ideally, to achieve optimal production in agriculture, crop stress needs to be measured in real-time, and plant inputs managed in response. However, many important physiological responses like photosynthesis are difficult to measure, and current trade-offs between cost, robustness, and spatial measurement capacity of available plant sensors may prevent practical in-field application of most current sensing techniques. This paper investigates a novel application of laser speckle imaging of a plant leaf as a sensor with an aim, ultimately, to detect indicators of crop stress: changes to the dynamic properties of leaf topography on the scale of the wavelength of laser light. In our previous published work, an initial prototype of the laser speckle acquisition system specific for plant status measurements together with data processing algorithms were developed. In this paper, we report a new area based statistical method that improves robustness of the data processing against disturbances from various sources. Water and light responses of the laser speckle measurements from cabbage leaves taken by the developed apparatus are exhibited via growth chamber experiments. Experimental evidence indicates that the properties of the laser speckle patterns from a leaf are closely related to the physiological status of the leaf. This technology has the potential to be robust, cost effective, and relatively inexpensive to scale.展开更多
In recent years, high-altitude aerostats have been increasingly developed in the direction of multi-functionality and large size. Due to the large size and the high flexibility, new challenges for large aerostats have...In recent years, high-altitude aerostats have been increasingly developed in the direction of multi-functionality and large size. Due to the large size and the high flexibility, new challenges for large aerostats have appeared in the configuration test and the deformation analysis. The methods of the configuration test and the deformation analysis for large airship have been researched and discussed. A tested method of the configuration,named internal scanning, is established to quickly obtain the spatial information of all surfaces for the large airship by the three-dimensional(3D) laser scanning technology. By using the surface wrap method, the configuration parameters of the large airship are calculated. According to the test data of the configuration, the structural dimensions such as the distances between the characteristic sections are measured. The method of the deformation analysis for the airship contains the algorithm of nonuniform rational B-splines(NURBS) and the finite element(FE)method. The algorithm of NURBS is used to obtain the reconfiguration model of the large airship. The seams are considered and the seam areas are divided. The FE model of the middle part of the large airship is established. The distributions of the stress and the strain for the large airship are obtained by the FE method. The position of the larger deformation for the airship is found.展开更多
Composite fiber optic overhead ground wire (OPGW) is increasingly applied in China's overhead transmission lines. The stainless steel structure is adopted by most OPGWs as it is very small and easy to match the ex...Composite fiber optic overhead ground wire (OPGW) is increasingly applied in China's overhead transmission lines. The stainless steel structure is adopted by most OPGWs as it is very small and easy to match the existing ground wire. The malfunction of OPGW in Beijing-Shanghai Optical Communication Project was analyzed through the chemical composition method and spectrum semi-quantitative method. The analysis indicates that the cable fault was due to the failure of seepage and irregular holes in the steel pipe of the optical unit. The rain water and the watery air entered into the optical units, and the water in turn became ice when temperature dropped. The occurrence of ice led to the acceleration of attenuation of the fiber. The results show that the rupture of stainless steel tube is mainly due to the instability of welding technique. The malfunction of OPGW is due to the local defects of welding seam because of local stress concentration in the manufacturing process.展开更多
立足于空间引力波探测对NPRO激光器多频段强度噪声的抑制需求,设计完成一款可用于实现NPRO激光器毫赫兹频段强度噪声和中频段弛豫振荡峰同时探测的低噪声光电探测器。该光电探测器采用零漂移运算放大器与高速运算放大器相结合的电路拓...立足于空间引力波探测对NPRO激光器多频段强度噪声的抑制需求,设计完成一款可用于实现NPRO激光器毫赫兹频段强度噪声和中频段弛豫振荡峰同时探测的低噪声光电探测器。该光电探测器采用零漂移运算放大器与高速运算放大器相结合的电路拓扑结构实现毫赫兹频段内低探测噪声的同时具备15 MHz的探测带宽。该光电探测器的噪声在0.1 m Hz~1Hz频段内的绝对噪声水平低于1×10^(-7)V/Hz^(1/2),在100 k Hz~1 MHz内绝对噪声水平低于2×10^(-8)V/Hz^(1/2)。实测结果显示在0.1 m Hz~1 Hz频段内的绝对噪声水平低于1×10^(-6)V/Hz^(1/2),在100 k Hz~1 MHz内绝对噪声水平低于5×10^(-8)V/Hz^(1/2)。实际噪声水平可满足空间引力波项目对NPRO激光器毫赫兹频段内强度噪声和中频段弛豫振荡峰的探测需求,可用于相关噪声抑制实验研究。展开更多
文摘Laser induced breakdown Spectroscopy(LIBS)was applied for the elemental analysis and exposure of the heavy metals in betel leaves in air.Pulsed Nd∶YAG(1064 nm)in conjunction with a suitable detector(LIBS 2000+,Ocean Optics,Inc)having the optical resolution of 0.06 nm was used to record the emission spectra from 220 to 720 nm.Elements like Al,Ba,Ca,Cr,Cu,P,Fe,K,Mg,Mn,Na,P,S,Sr,and Zn were found to present in the samples.The relative abundances of the observed elements were calculated through standard calibration curve method,integrated intensity ratio method,and weight percentage LIBS approach.LIBS findings were validated by comparing its results with the results obtained using a typical analytical technique of Inductively Coupled plasma-optical emission spectroscopy(ICP-OES).Limit of detection(LOD)of the LIBS system was also estimated for heavy metals.The experience gain through this work implies that LIBS could be highly applicable for testing the quality and purity of food products.
文摘Pearlitic ductile irons(PDIs)are used in transportation and nuclear energy industries.In heavy loading situation,the service life of PDI is affected by numerous tribo aspects.In this study,surface of the PDI is alloyed with WC-12%Co powder using a high power fibre laser.The wear properties of the base material and laser alloying samples were investigated by tribometer with various parameters,i.e.,temperature,load and sliding speed.Based on experimental test,the load has maximum percentage of contribution and followed by sliding speed and working temperature.The optimized tribological parameters by Grey relational analysis(GRA)were established and those values are closely matched with predicted values.Besides,base material and laser alloying surfaces were examined through Vickers hardness machine,scanning electron microscopy(SEM)and roughness tester.The laser altered specimen shows no defects and improves the wear properties than substrates.The identified optimal tribological parameters are load of 30 N,speed of 0.5 m/s and working temperature of 300℃,and load of 30 N,speed of 0.5 m/s and working temperature of 200℃ for base metal and laser alloying samples,respectively.
文摘Ideally, to achieve optimal production in agriculture, crop stress needs to be measured in real-time, and plant inputs managed in response. However, many important physiological responses like photosynthesis are difficult to measure, and current trade-offs between cost, robustness, and spatial measurement capacity of available plant sensors may prevent practical in-field application of most current sensing techniques. This paper investigates a novel application of laser speckle imaging of a plant leaf as a sensor with an aim, ultimately, to detect indicators of crop stress: changes to the dynamic properties of leaf topography on the scale of the wavelength of laser light. In our previous published work, an initial prototype of the laser speckle acquisition system specific for plant status measurements together with data processing algorithms were developed. In this paper, we report a new area based statistical method that improves robustness of the data processing against disturbances from various sources. Water and light responses of the laser speckle measurements from cabbage leaves taken by the developed apparatus are exhibited via growth chamber experiments. Experimental evidence indicates that the properties of the laser speckle patterns from a leaf are closely related to the physiological status of the leaf. This technology has the potential to be robust, cost effective, and relatively inexpensive to scale.
基金supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (11421091)。
文摘In recent years, high-altitude aerostats have been increasingly developed in the direction of multi-functionality and large size. Due to the large size and the high flexibility, new challenges for large aerostats have appeared in the configuration test and the deformation analysis. The methods of the configuration test and the deformation analysis for large airship have been researched and discussed. A tested method of the configuration,named internal scanning, is established to quickly obtain the spatial information of all surfaces for the large airship by the three-dimensional(3D) laser scanning technology. By using the surface wrap method, the configuration parameters of the large airship are calculated. According to the test data of the configuration, the structural dimensions such as the distances between the characteristic sections are measured. The method of the deformation analysis for the airship contains the algorithm of nonuniform rational B-splines(NURBS) and the finite element(FE)method. The algorithm of NURBS is used to obtain the reconfiguration model of the large airship. The seams are considered and the seam areas are divided. The FE model of the middle part of the large airship is established. The distributions of the stress and the strain for the large airship are obtained by the FE method. The position of the larger deformation for the airship is found.
基金Project(70671040) supported by the National Natural Science Foundation of China
文摘Composite fiber optic overhead ground wire (OPGW) is increasingly applied in China's overhead transmission lines. The stainless steel structure is adopted by most OPGWs as it is very small and easy to match the existing ground wire. The malfunction of OPGW in Beijing-Shanghai Optical Communication Project was analyzed through the chemical composition method and spectrum semi-quantitative method. The analysis indicates that the cable fault was due to the failure of seepage and irregular holes in the steel pipe of the optical unit. The rain water and the watery air entered into the optical units, and the water in turn became ice when temperature dropped. The occurrence of ice led to the acceleration of attenuation of the fiber. The results show that the rupture of stainless steel tube is mainly due to the instability of welding technique. The malfunction of OPGW is due to the local defects of welding seam because of local stress concentration in the manufacturing process.
文摘立足于空间引力波探测对NPRO激光器多频段强度噪声的抑制需求,设计完成一款可用于实现NPRO激光器毫赫兹频段强度噪声和中频段弛豫振荡峰同时探测的低噪声光电探测器。该光电探测器采用零漂移运算放大器与高速运算放大器相结合的电路拓扑结构实现毫赫兹频段内低探测噪声的同时具备15 MHz的探测带宽。该光电探测器的噪声在0.1 m Hz~1Hz频段内的绝对噪声水平低于1×10^(-7)V/Hz^(1/2),在100 k Hz~1 MHz内绝对噪声水平低于2×10^(-8)V/Hz^(1/2)。实测结果显示在0.1 m Hz~1 Hz频段内的绝对噪声水平低于1×10^(-6)V/Hz^(1/2),在100 k Hz~1 MHz内绝对噪声水平低于5×10^(-8)V/Hz^(1/2)。实际噪声水平可满足空间引力波项目对NPRO激光器毫赫兹频段内强度噪声和中频段弛豫振荡峰的探测需求,可用于相关噪声抑制实验研究。