期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Advances of Model Order Reduction Research in Large-scale System Simulation
1
作者 SUN Dao-heng, MA Hai-yang, WANG Yan-hua (Department of Mechanical and Electrical Engineering, Xiamen Universi ty, Xiamen 361005, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期174-,共1页
Model Order Reduction (MOR) plays more and more imp or tant role in complex system simulation, design and control recently. For example , for the large-size space structures, VLSI and MEMS (Micro-ElectroMechanical Sys... Model Order Reduction (MOR) plays more and more imp or tant role in complex system simulation, design and control recently. For example , for the large-size space structures, VLSI and MEMS (Micro-ElectroMechanical Systems) etc., in order to shorten the development cost, increase the system co ntrolling accuracy and reduce the complexity of controllers, the reduced order model must be constructed. Even in Virtual Reality (VR), the simulation and d isplay must be in real-time, the model order must be reduced too. The recent advances of MOR research are overviewed in the article. The MOR theor y and methods may be classified as Singular Value decomposition (SVD) based, the Krylov subspace based and others. The merits and demerits of the different meth ods are analyzed, and the existed problems are pointed out. Moreover, the applic ation’s fields are overviewed, and the potential applications are forecaste d. After the existed problems analyzed, the future work is described. There are som e problems in the traditional methods such as SVD and Krylov subspace, they are that it’s difficult to (1)guarantee the stability of the original system, (2) b e adaptive to nonlinear system, and (3) control the modeling accuracy. The f uture works may be solving the above problems on the foundation of the tradition al methods, and applying other methods such as wavelet or signal compression. 展开更多
关键词 model order reduction large-scale system SVD krylov
在线阅读 下载PDF
Temperature control for thermal treatment of aluminum alloy in a large-scale vertical quench furnace 被引量:3
2
作者 沈玲 贺建军 +1 位作者 喻寿益 桂卫华 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第7期1719-1728,共10页
The temperature control of the large-scale vertical quench furnace is very difficult due to its huge volume and complex thermal exchanges. To meet the technical requirement of the quenching process, a temperature cont... The temperature control of the large-scale vertical quench furnace is very difficult due to its huge volume and complex thermal exchanges. To meet the technical requirement of the quenching process, a temperature control system which integrates temperature calibration and temperature uniformity control is developed for the thermal treatment of aluminum alloy workpieces in the large-scale vertical quench furnace. To obtain the aluminum alloy workpiece temperature, an air heat transfer model is newly established to describe the temperature gradient distribution so that the immeasurable workpiece temperature can be calibrated from the available thermocouple temperature. To satisfy the uniformity control of the furnace temperature, a second order partial differential equation(PDE) is derived to describe the thermal dynamics inside the vertical quench furnace. Based on the PDE, a decoupling matrix is constructed to solve the coupling issue and decouple the heating process into multiple independent heating subsystems. Then, using the expert control rule to find a compromise of temperature rising time and overshoot during the quenching process. The developed temperature control system has been successfully applied to a 31 m large-scale vertical quench furnace, and the industrial running results show the significant improvement of the temperature uniformity, lower overshoot and shortened processing time. 展开更多
关键词 large-scale vertical quench furnace temperature calibration thermal dynamic model decoupling control
在线阅读 下载PDF
Large-scale two-dimensional nonlinear FE analysis on PGA amplification effect with depth and focusing effect of Fuzhou Basin 被引量:2
3
作者 金丹丹 陈国兴 董菲蕃 《Journal of Central South University》 SCIE EI CAS 2014年第7期2894-2903,共10页
Based on the explicit finite element(FE) method and platform of ABAQUS,considering both the inhomogeneity of soils and concave-convex fluctuation of topography,a large-scale refined two-dimensional(2D) FE nonlinear an... Based on the explicit finite element(FE) method and platform of ABAQUS,considering both the inhomogeneity of soils and concave-convex fluctuation of topography,a large-scale refined two-dimensional(2D) FE nonlinear analytical model for Fuzhou Basin was established.The peak ground motion acceleration(PGA) and focusing effect with depth were analyzed.Meanwhile,the results by wave propagation of one-dimensional(1D) layered medium equivalent linearization method were added for contrast.The results show that:1) PGA at different depths are obviously amplified compared to the input ground motion,amplification effect of both funnel-shaped depression and upheaval areas(based on the shape of bedrock surface) present especially remarkable.The 2D results indicate that the PGA displays a non-monotonic decreasing with depth and a greater focusing effect of some particular layers,while the 1D results turn out that the PGA decreases with depth,except that PGA at few particular depth increases abruptly; 2) To the funnel-shaped depression areas,PGA amplification effect above 8 m depth shows relatively larger,to the upheaval areas,PGA amplification effect from 15 m to 25 m depth seems more significant.However,the regularities of the PGA amplification effect could hardly be found in the rest areas; 3) It appears a higher regression rate of PGA amplification coefficient with depth when under a smaller input motion; 4) The frequency spectral characteristic of input motion has noticeable effects on PGA amplification tendency. 展开更多
关键词 seismic effect of basin large-scale fluctuation of topography inhomogeneity site focusing effect two-dimensional refined finite element model nonlinear analysis
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部