With the growing deployment of smart distribution grid,it has become urgent to investigate the smart distribution grid behavior during transient faults and improve the system stability.The feasibility of segmenting la...With the growing deployment of smart distribution grid,it has become urgent to investigate the smart distribution grid behavior during transient faults and improve the system stability.The feasibility of segmenting large power grids and multiple smart distribution grids interconnections using energy storage technology for improving the system dynamic stability was studied.The segmentation validity of the large power grids and smart distribution grid inverter output interconnections power system using energy storage technology was proved in terms of theoretical analysis.Then,the influences of the energy storage device location and capacity on the proposed method were discussed in detail.The conclusion is obtained that the ESD optimal locations are allocated at the tie line terminal buses in the interconnected grid,respectively.The effectiveness of the proposed method was verified by simulations in an actual power system.展开更多
Safety of underground ammunition storage is an important issue,especially during the accidental ignition of missiles.This work investigates the pressure and temperature distribution of the multi-layer underground ammu...Safety of underground ammunition storage is an important issue,especially during the accidental ignition of missiles.This work investigates the pressure and temperature distribution of the multi-layer underground ammunition storage with a pressure relief duct during the accidental ignition process of the missile.A large-scale experiment was carried out using a multi-layered restricted space with a pressure relief duct to simulate the underground ammunition store and a solid rocket motor to simulate the accidental ignition of the missile.The results show that when the motor gas mass flow increased by5.6 times,the maximum pressure of the ammunition storage increased by 5.87 times.At a certain motor flow rate,when the pressure relief exhaust area at the end of the relief duct was reduced by 1/2,the maximum pressure on the first layer did not change.But the rate of pressure relief was reduced and the time delayed for the pressure of ammunition store to drop to zero.In this experiment,when the motor ignition position was located in to the third layer ammunition chamber,the maximum pressure was reduced by 32.9%and also reduced the rate of change of pressure.In addition,for the experimental conditions,the theoretical analysis of the pressure relief of the ammunition storage is given by a simplified model.Based on the findings,some suggestions to the safety protection design of ammunition store are proposed.展开更多
Decentralized robust stabilization problem of discrete-time fuzzy large-scale systems with parametric uncertainties is considered. This uncertain fuzzy large-scale system consists of N interconnected T-S fuzzy subsyst...Decentralized robust stabilization problem of discrete-time fuzzy large-scale systems with parametric uncertainties is considered. This uncertain fuzzy large-scale system consists of N interconnected T-S fuzzy subsystems, and the parametric uncertainties are unknown but norm-bounded. Based on Lyapunov stability theory and decentralized control theory of large-scale system, the design schema of decentralized parallel distributed compensation (DPDC) fuzzy controllers to ensure the asymptotic stability of the whole fuzzy large-scale system is proposed. The existence conditions for these controllers take the forms of LMIs. Finally a numerical simulation example is given to show the utility of the method proposed.展开更多
基金Project(N110404031)supported by the Fundamental Research Funds for the Central Universities,China
文摘With the growing deployment of smart distribution grid,it has become urgent to investigate the smart distribution grid behavior during transient faults and improve the system stability.The feasibility of segmenting large power grids and multiple smart distribution grids interconnections using energy storage technology for improving the system dynamic stability was studied.The segmentation validity of the large power grids and smart distribution grid inverter output interconnections power system using energy storage technology was proved in terms of theoretical analysis.Then,the influences of the energy storage device location and capacity on the proposed method were discussed in detail.The conclusion is obtained that the ESD optimal locations are allocated at the tie line terminal buses in the interconnected grid,respectively.The effectiveness of the proposed method was verified by simulations in an actual power system.
基金supported by the Natural Science Foundation of China(Grant number:NSFC11572095)。
文摘Safety of underground ammunition storage is an important issue,especially during the accidental ignition of missiles.This work investigates the pressure and temperature distribution of the multi-layer underground ammunition storage with a pressure relief duct during the accidental ignition process of the missile.A large-scale experiment was carried out using a multi-layered restricted space with a pressure relief duct to simulate the underground ammunition store and a solid rocket motor to simulate the accidental ignition of the missile.The results show that when the motor gas mass flow increased by5.6 times,the maximum pressure of the ammunition storage increased by 5.87 times.At a certain motor flow rate,when the pressure relief exhaust area at the end of the relief duct was reduced by 1/2,the maximum pressure on the first layer did not change.But the rate of pressure relief was reduced and the time delayed for the pressure of ammunition store to drop to zero.In this experiment,when the motor ignition position was located in to the third layer ammunition chamber,the maximum pressure was reduced by 32.9%and also reduced the rate of change of pressure.In addition,for the experimental conditions,the theoretical analysis of the pressure relief of the ammunition storage is given by a simplified model.Based on the findings,some suggestions to the safety protection design of ammunition store are proposed.
基金This project was supported by NSFC Project (60474047), (60334010) and GuangDong Province Natural Science Foundationof China(31406)and China Postdoctoral Science Foundation (20060390725).
文摘Decentralized robust stabilization problem of discrete-time fuzzy large-scale systems with parametric uncertainties is considered. This uncertain fuzzy large-scale system consists of N interconnected T-S fuzzy subsystems, and the parametric uncertainties are unknown but norm-bounded. Based on Lyapunov stability theory and decentralized control theory of large-scale system, the design schema of decentralized parallel distributed compensation (DPDC) fuzzy controllers to ensure the asymptotic stability of the whole fuzzy large-scale system is proposed. The existence conditions for these controllers take the forms of LMIs. Finally a numerical simulation example is given to show the utility of the method proposed.