期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
基于LE与ICROA-RVM的瓦斯传感器故障诊断 被引量:5
1
作者 徐耀松 邱微 +2 位作者 王治国 王雨虹 阎馨 《传感技术学报》 CAS CSCD 北大核心 2019年第1期89-95,共7页
针对瓦斯传感器故障诊断速度慢、诊断精度不高的问题,以常见的冲击型、漂移型、偏置型和周期型传感器输出故障作为研究对象,提出一种基于拉普拉斯特征映射(LE)和改进化学反应优化算法(ICROA)优化的相关向量机(RVM)进行模式分类与辨识,... 针对瓦斯传感器故障诊断速度慢、诊断精度不高的问题,以常见的冲击型、漂移型、偏置型和周期型传感器输出故障作为研究对象,提出一种基于拉普拉斯特征映射(LE)和改进化学反应优化算法(ICROA)优化的相关向量机(RVM)进行模式分类与辨识,实现瓦斯传感器故障诊断。首先采用流形学习方法 LE对高维原始数据空间进行非线性降维特征提取,提取故障特征,该方法极大地保留了原始数据中的整体几何信息;然后将故障特征作为RVM模型训练输入,利用ICROA算法对RVM模型的核参数进行全局寻优,将训练好的ICROA-RVM模型对测试样本进行故障诊断。实验结果表明:该诊断方法具有训练速度快,故障辨识精度高的特点,故障诊断正确率在96%以上,能够有效地提高瓦斯传感器故障诊断的速度和准确性。 展开更多
关键词 瓦斯传感器故障诊断 拉普拉斯特征映射 改进化学反应优化算法 相关向量机
在线阅读 下载PDF
基于改进增量LE的压缩机故障特征提取方法 被引量:7
2
作者 许庆诚 胡建中 《仪器仪表学报》 EI CAS CSCD 北大核心 2013年第4期791-796,共6页
提高离心压缩机故障特征提取精度对于后续故障诊断具有重要意义。针对传统增量LE算法处理精度差的问题,分析了参数t对传统增量LE算法特征提取精度的影响,提出了一种改进的增量LE算法。该方法将传统的增量LE算法与cam加权距离相结合,在... 提高离心压缩机故障特征提取精度对于后续故障诊断具有重要意义。针对传统增量LE算法处理精度差的问题,分析了参数t对传统增量LE算法特征提取精度的影响,提出了一种改进的增量LE算法。该方法将传统的增量LE算法与cam加权距离相结合,在新增样本点投影过程中通过cam加权距离选取邻域,采用热核形式计算新增样本的权值,由局部保持特性,通过新增样本的近邻来重构其低维嵌入。S-curve仿真数据以及离心压缩机故障数据分析表明:相比于传统的增量LE方法,改进的增量LE方法能有效提高新增故障样本特征提取的精度。 展开更多
关键词 cam加权距离 拉普拉斯特征影射算法 流形学习 增量
在线阅读 下载PDF
基于改进LE和约束种子K均值的半监督故障识别 被引量:5
3
作者 张鑫 郭顺生 江丽 《振动与冲击》 EI CSCD 北大核心 2019年第16期93-99,共7页
为充分利用少量有标记样本蕴含的重要信息,在拉普拉斯特征映射(LE)算法基础上,对标记样本点进行置信度约束,提出了改进的LE算法及基于该算法的半监督故障诊断模型。该模型采用改进的LE算法,直接从原始高维振动信号中提取最敏感的低维流... 为充分利用少量有标记样本蕴含的重要信息,在拉普拉斯特征映射(LE)算法基础上,对标记样本点进行置信度约束,提出了改进的LE算法及基于该算法的半监督故障诊断模型。该模型采用改进的LE算法,直接从原始高维振动信号中提取最敏感的低维流形特征,随后将其输入到基于约束种子K均值算法构建的分类器,从而以可视化的聚类结果标识机械设备的运行状态。与核主成分分析、核判别分析等经典算法进行比较,该模型能明显提高轴承故障类型和滚动体故障严重性的识别性能。 展开更多
关键词 半监督 拉普拉斯特征映射(le) 约束种子K均值 故障诊断
在线阅读 下载PDF
一种复杂机电系统LE-SVDD异常监测方法 被引量:2
4
作者 亚森江.加入拉 高建民 +2 位作者 高智勇 姜洪权 陈子胜 《振动.测试与诊断》 EI CSCD 北大核心 2017年第3期469-475,共7页
复杂机电系统生产过程监测数据具有明显的高维非线性和复杂分布特点,针对传统的方法难以满足复杂系统异常辨识的要求,提出一种拉普拉斯特征映射-支持向量数据描述(Laplacian eigenmaps-support vector domain description,简称LE-SVDD)... 复杂机电系统生产过程监测数据具有明显的高维非线性和复杂分布特点,针对传统的方法难以满足复杂系统异常辨识的要求,提出一种拉普拉斯特征映射-支持向量数据描述(Laplacian eigenmaps-support vector domain description,简称LE-SVDD)的异常监测方法。由于高维特征空间中距离很近的点投影到低维空间后距离应该很近,因此改进的LE方法使用一个有权无向图来描述一个流行,用嵌入的方式找到高维数据的低维嵌入,从而能够发现高维数据内部的地位流行结构。通过标准的田纳西-伊斯曼过程(Tennessee Eastman process,简称TE过程)测试和训练数据进行仿真实验,给出了在非线性特征提取和不同时段异常辨识的准确结果。平均漏报率和误报率都比较低,分别为6.063,6和5.625,3.125,这表明LE-SVDD方法在状态监测中具有良好的非线性和高维数据处理能力,适用于工程系统的监测诊断。 展开更多
关键词 复杂机电系统 异常监测方法 特征提取 拉普拉斯特征映射-支持向量数据描述(le-SVDD) 田纳西-伊斯曼(TE)过程
在线阅读 下载PDF
基于LE-ELM的锂电池热过程时空建模方法 被引量:3
5
作者 吕洲 何波 +1 位作者 黄镇泽 梁志勇 《储能科学与技术》 CAS CSCD 北大核心 2022年第10期3200-3208,共9页
锂电池管理系统对于锂电池的效率、寿命和安全至关重要,而电池管理系统对电池的控制、热管理和故障诊断等都需要依赖于准确的电池热过程模型。然而锂电池热过程属于一种具有强非线性特征的分布参数系统,电池内部的温度分布是时空耦合的... 锂电池管理系统对于锂电池的效率、寿命和安全至关重要,而电池管理系统对电池的控制、热管理和故障诊断等都需要依赖于准确的电池热过程模型。然而锂电池热过程属于一种具有强非线性特征的分布参数系统,电池内部的温度分布是时空耦合的,并且具有无限维的特性,使得建模存在很大的困难。针对上述问题,本工作提出了一种基于LE-ELM的锂离子电池热过程建模方法。首先使用基于拉普拉斯特征映射(laplacian eigenmaps,LE)的局部非线性降维方法构建空间基函数,以表征系统固有的非线性拓扑特征;利用所得的基函数进行时空分离,获得原始数据的低阶时序表达;然后用极限学习机(extreme learning machine,ELM)以时间系数和对应的电流电压输入信号来近似低阶时序模型。最后集成辨识出的ELM模型与空间基函数,通过时空综合重构出锂离子电池的全局时空模型。为验证算法的有效性,使用所提出的方法对三元软包锂电池热过程进行建模。 展开更多
关键词 分布参数系统 锂电池热过程 拉普拉斯特征映射 极限学习机
在线阅读 下载PDF
基于局部均值分解与拉普拉斯特征映射的滚动轴承故障诊断方法 被引量:8
6
作者 徐倩倩 刘凯 +1 位作者 侯和平 徐卓飞 《中国机械工程》 EI CAS CSCD 北大核心 2016年第22期3075-3081,共7页
针对滚动轴承非平稳振动信号的特征提取及维数优化问题,提出了融合局部均值分解与拉普拉斯特征映射的轴承故障诊断方法。首先,通过局部均值分解对非平稳振动信号进行平稳化分解,提取乘积函数分量、瞬时频率及瞬时幅值的高维信号特征集;... 针对滚动轴承非平稳振动信号的特征提取及维数优化问题,提出了融合局部均值分解与拉普拉斯特征映射的轴承故障诊断方法。首先,通过局部均值分解对非平稳振动信号进行平稳化分解,提取乘积函数分量、瞬时频率及瞬时幅值的高维信号特征集;然后,将高维特征集作为拉普拉斯特征映射算法的学习对象,提取轴承高维故障特征集的内在流形分布,以获得敏感、稳定的轴承振动特征参数,实现基于非平稳振动信号分析的滚动轴承故障特征提取;最后,结合支持向量分类模型量化LMD-LE方法的特征提取效果,实现不同状况下的轴承故障分类。轴承故障样本分类识别平均正确率达到91.17%,表明LMD-LE方法有效实现了高维局部均值分解特征集合的降噪,所提取的特征矩阵对轴承故障特征描述准确。 展开更多
关键词 非平稳信号 局部均值分解 拉普拉斯特征映射 故障诊断
在线阅读 下载PDF
基于WAMS和改进拉普拉斯特征映射的同调机群在线识别 被引量:19
7
作者 宋洪磊 吴俊勇 +1 位作者 郝亮亮 冀鲁豫 《电网技术》 EI CSCD 北大核心 2013年第8期2157-2164,共8页
当系统发生严重级联故障导致失步运行时,需要快速准确地识别出系统中的同调机群,为下一步的自主解列控制提供基础。针对WAMS测量到的发电机动态轨迹信息往往具有非线性和非平稳性等特点,提出了一种在线识别同调机群的新方法,能充分考虑... 当系统发生严重级联故障导致失步运行时,需要快速准确地识别出系统中的同调机群,为下一步的自主解列控制提供基础。针对WAMS测量到的发电机动态轨迹信息往往具有非线性和非平稳性等特点,提出了一种在线识别同调机群的新方法,能充分考虑各种故障场景的动态特性和非线性系统的时变特征。首先根据WAMS量测可得到故障后发电机组的实时响应功角轨迹信息,利用基于类别信息和核空间的改进拉普拉斯特征映射算法提取特征信息,进而识别出各发电机的运行特性;再利用k-way余弦相似度因子分群算法对发电机组进行自主识别分群。最后通过新英格兰39节点系统仿真,验证了所提方法的有效性,并且适用于系统不同运行方式,能在线准确识别同调机群。 展开更多
关键词 广域量测系统 拉普拉斯特征映射 同调识别 特征提取
在线阅读 下载PDF
基于流形学习与一类支持向量机的滚动轴承早期故障识别方法 被引量:10
8
作者 刘丽娟 陈果 郝腾飞 《中国机械工程》 EI CAS CSCD 北大核心 2013年第5期628-633,共6页
提出了一种基于流形学习与一类支持向量机的轴承早期故障识别方法。首先提取轴承信号的时域参数构成原始特征样本空间;然后采用基于拉普拉斯特征映射算法(Laplacian eigenmap,LE)的流形学习方法对特征样本进行特征压缩,提取出敏感的故... 提出了一种基于流形学习与一类支持向量机的轴承早期故障识别方法。首先提取轴承信号的时域参数构成原始特征样本空间;然后采用基于拉普拉斯特征映射算法(Laplacian eigenmap,LE)的流形学习方法对特征样本进行特征压缩,提取出敏感的故障特征;最后采用一类支持向量机对各状态实现分类识别。利用实测的滚动轴承故障数据对算法进行了验证,并将LE方法与主成分分析(PCA)方法进行了比较,结果证明该方法可行。 展开更多
关键词 流形学习 一类支持向量机 轴承 故障识别 拉普拉斯特征映射
在线阅读 下载PDF
基于半监督拉普拉斯特征映射的故障诊断 被引量:6
9
作者 江丽 郭顺生 《中国机械工程》 EI CAS CSCD 北大核心 2016年第14期1911-1916,共6页
针对有标记故障样本不足和故障数据高维非线性的问题,提出了基于半监督拉普拉斯特征映射(LE)算法的故障诊断模型。该模型运用LE算法,直接从原始高维振动信号中提取低维流形特征,并将其输入到基于LE的半监督分类器,从而识别出机械设备的... 针对有标记故障样本不足和故障数据高维非线性的问题,提出了基于半监督拉普拉斯特征映射(LE)算法的故障诊断模型。该模型运用LE算法,直接从原始高维振动信号中提取低维流形特征,并将其输入到基于LE的半监督分类器,从而识别出机械设备的运行状态。与传统方法相比,该模型能明显提高滚动轴承和齿轮的故障识别性能。 展开更多
关键词 故障诊断 特征提取 流形学习 半监督拉普拉斯特征映射
在线阅读 下载PDF
基于拉普拉斯特征映射的仿射传播聚类 被引量:1
10
作者 张亮 杜子平 +1 位作者 张俊 李杨 《计算机工程》 CAS CSCD 北大核心 2011年第9期216-217,220,共3页
仿射传播方法难以处理具有流形结构的数据集。为此,提出一种基于拉普拉斯特征映射的仿射传播聚类算法(APPLE),在标准仿射传播的基础上增强流形学习的能力。使用测地距离计算数据点间相似度,采用拉普拉斯特征映射对数据集进行降维及特征... 仿射传播方法难以处理具有流形结构的数据集。为此,提出一种基于拉普拉斯特征映射的仿射传播聚类算法(APPLE),在标准仿射传播的基础上增强流形学习的能力。使用测地距离计算数据点间相似度,采用拉普拉斯特征映射对数据集进行降维及特征提取。对图像聚类应用的实验结果证明了APPLE的聚类效果优于标准仿射传播方法。 展开更多
关键词 拉普拉斯特征映射 仿射传播 DIJKSTRA算法 归一化互信息
在线阅读 下载PDF
基于改进MVU的非线性动态过程故障检测方法 被引量:10
11
作者 陈如清 《仪器仪表学报》 EI CAS CSCD 北大核心 2013年第9期2111-2117,共7页
针对化工过程数据的非线性和动态性分布特征,引入Laplacian特征映射(LE),提出了一种基于改进最大方差展开(MVU)的特征提取算法。在改进算法中,局部以欧式距离、全局以测地线距离为尺度度量数据间差异性,以更好反映数据内在几何性质;此外... 针对化工过程数据的非线性和动态性分布特征,引入Laplacian特征映射(LE),提出了一种基于改进最大方差展开(MVU)的特征提取算法。在改进算法中,局部以欧式距离、全局以测地线距离为尺度度量数据间差异性,以更好反映数据内在几何性质;此外,借鉴LE算法思路,通过最小化近邻点间距离实现流形结构保持。改进算法兼具全局特性保持和局部流形学习能力,计算效率也有较大提高。将其用于提取非线性动态过程高维数据子流形特征,利用SVDD在特征空间建立故障检测模型,构造统计量并确定其控制限。TE过程仿真及丙烯聚合过程实验研究表明改进方法能有效挖掘过程特征信息、监控过程变化并及时检测故障发生,故障检测率较传统方法有显著提高。 展开更多
关键词 最大方差展开 laplacian特征映射 SVDD 非线性动态过程 故障检测
在线阅读 下载PDF
多函数激活的拉普拉斯深度回声状态网络
12
作者 廖永波 李红梅 《计算机应用研究》 CSCD 北大核心 2020年第9期2591-2594,2624,共5页
结合可变激活函数、降维算法和深度回声状态网络,针对新的神经网络模型进行了研究。其中可变激活函数是多函数的线性组合,可以通过调整系数来改变激活函数的非饱和区;拉普拉斯特征映射降维算法通过降低储层状态矩阵的维度来改善原网络... 结合可变激活函数、降维算法和深度回声状态网络,针对新的神经网络模型进行了研究。其中可变激活函数是多函数的线性组合,可以通过调整系数来改变激活函数的非饱和区;拉普拉斯特征映射降维算法通过降低储层状态矩阵的维度来改善原网络面临的病态、不适定问题;还使用了遗传算法来寻找最佳目标子空间维度。仿真分析从扰动影响、转换稳定性、时序预测和记忆容量四个方面进行,从仿真结果(新模型的记忆容量是深度回声状态网络的两倍,均方根误差比回声状态网络小42%)来看,新模型的记忆容量、预测精度都得到了显著改善。 展开更多
关键词 深度回声状态网络 激活函数 拉普拉斯特征映射 遗传算法
在线阅读 下载PDF
基于拉普拉斯特征映射学习的隐匿FDI攻击检测 被引量:11
13
作者 石家宇 陈博 俞立 《自动化学报》 EI CAS CSCD 北大核心 2021年第10期2494-2500,共7页
智能电网中的隐匿虚假数据入侵(False data injection,FDI)攻击能够绕过坏数据检测机制,导致控制中心做出错误的状态估计,进而干扰电力系统的正常运行.由于电网系统具有复杂的拓扑结构,故基于传统机器学习的攻击信号检测方法存在维度过... 智能电网中的隐匿虚假数据入侵(False data injection,FDI)攻击能够绕过坏数据检测机制,导致控制中心做出错误的状态估计,进而干扰电力系统的正常运行.由于电网系统具有复杂的拓扑结构,故基于传统机器学习的攻击信号检测方法存在维度过高带来的过拟合问题,而深度学习检测方法则存在训练时间长、占用大量计算资源的问题.为此,针对智能电网中的隐匿FDI攻击信号,提出了基于拉普拉斯特征映射降维的神经网络检测学习算法,不仅降低了陷入过拟合的风险,同时也提高了隐匿FDI攻击检测学习算法的泛化能力.最后,在IEEE57-Bus电力系统模型中验证了所提方法的优点和有效性. 展开更多
关键词 智能电网 隐匿虚假数据入侵攻击 拉普拉斯特征映射 经网络
在线阅读 下载PDF
时空RPCA在复杂场景下的运动目标检测 被引量:5
14
作者 张超婕 余勤 《计算机工程与设计》 北大核心 2020年第1期197-202,共6页
在复杂动态背景下,鲁棒主成分分析模型(RPCA)容易将背景中动态背景误判为前景运动目标,导致运动目标检测精度不高。为解决该问题,提出一种基于非凸加权核范数的时空低秩RPCA算法。使用非凸加权核范数替代传统的核范数进行低秩约束,在观... 在复杂动态背景下,鲁棒主成分分析模型(RPCA)容易将背景中动态背景误判为前景运动目标,导致运动目标检测精度不高。为解决该问题,提出一种基于非凸加权核范数的时空低秩RPCA算法。使用非凸加权核范数替代传统的核范数进行低秩约束,在观测矩阵上通过拉普拉斯特征映射得到时空图拉普拉斯矩阵,将得到的时空图拉普拉斯矩阵嵌入低秩背景矩阵以保持背景对噪声和离群值的鲁棒性。实验结果表明,所提模型在复杂场景中能较准确检测出运动目标。 展开更多
关键词 鲁棒主成分分析 非凸加权核范数 时空低秩RPCA算法 拉普拉斯特征映射 运动目标检测
在线阅读 下载PDF
Adaptive spectral affinity propagation clustering 被引量:2
15
作者 TANG Lin SUN Leilei +1 位作者 GUO Chonghui ZHANG Zhen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第3期647-664,共18页
Affinity propagation(AP)is a classic clustering algorithm.To improve the classical AP algorithms,we propose a clustering algorithm namely,adaptive spectral affinity propagation(AdaSAP).In particular,we discuss why AP ... Affinity propagation(AP)is a classic clustering algorithm.To improve the classical AP algorithms,we propose a clustering algorithm namely,adaptive spectral affinity propagation(AdaSAP).In particular,we discuss why AP is not suitable for non-spherical clusters and present a unifying view of nine famous arbitrary-shaped clustering algorithms.We propose a strategy of extending AP in non-spherical clustering by constructing category similarity of objects.Leveraging the monotonicity that the clusters’number increases with the self-similarity in AP,we propose a model selection procedure that can determine the number of clusters adaptively.For the parameters introduced by extending AP in non-spherical clustering,we provide a grid-evolving strategy to optimize them automatically.The effectiveness of AdaSAP is evaluated by experiments on both synthetic datasets and real-world clustering tasks.Experimental results validate that the superiority of AdaSAP over benchmark algorithms like the classical AP and spectral clustering algorithms. 展开更多
关键词 affinity propagation(AP) laplacian eigenmap(le) arbitrary-shaped cluster model selection
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部