The study of land surface temperature(LST)is of great significance for ecosystem monitoring and ecological environmental protection in the Qinling Mountains of China.In view of the contradicting spatial and temporal r...The study of land surface temperature(LST)is of great significance for ecosystem monitoring and ecological environmental protection in the Qinling Mountains of China.In view of the contradicting spatial and temporal resolutions in extracting LST from satellite remote sensing(RS)data,the areas with complex landforms of the Eastern Qinling Mountains were selected as the research targets to establish the correlation between the normalized difference vegetation index(NDVI)and LST.Detailed information on the surface features and temporal changes in the land surface was provided by Sentinel-2 and Sentinel-3,respectively.Based on the statistically downscaling method,the spatial scale could be decreased from 1000 m to 10 m,and LST with a Sentinel-3 temporal resolution and a 10 m spatial resolution could be retrieved.Comparing the 1 km resolution Sentinel-3 LST with the downscaling results,the 10 m LST downscaling data could accurately reflect the spatial distribution of the thermal characteristics of the original LST image.Moreover,the surface temperature data with a 10 m high spatial resolution had clear texture and obvious geomorphic features that could depict the detailed information of the ground features.The results showed that the average error was 5 K on April 16,2019 and 2.6 K on July 15,2019.The smaller error values indicated the higher vegetation coverage of summer downscaling result with the highest level on July 15.展开更多
农田干旱具有范围广且对农业生产影响巨大的特点,对农田干旱的遥感实时动态监测是目前公认的难题。利用MODIS的地表温度(LST)产品和叶面积指数(LAI)产品,构建LST-LAI光谱特征空间,提出温度—叶面积干旱指数(temperature LAI drought ind...农田干旱具有范围广且对农业生产影响巨大的特点,对农田干旱的遥感实时动态监测是目前公认的难题。利用MODIS的地表温度(LST)产品和叶面积指数(LAI)产品,构建LST-LAI光谱特征空间,提出温度—叶面积干旱指数(temperature LAI drought index,TLDI)监测农田水分含量,并利用宁夏实测的0~10cm平均土壤含水量验证该指数的精度,结果表明:它们之间具有良好的相关性,R2的变化范围为0.43~0.86。与TVDI相比,TLDI弥补了作物封垄后TVDI因归一化植被指数(NDVI)饱和对农田水分监测精度降低的缺陷。此外,利用MODIS数据产品LST和LAI进行农田干旱监测,避免了使用MODIS原始数据的繁杂处理过程,初步为MODIS数据产品在农田干旱监测业务化运行探索出一条技术流程。展开更多
基金Supported by the National Key R&D Plan(2018YFC1506500)Open Research Fund Project of Key Laboratory of Ecological Environment Meteorology of Qinling Mountains and Loess Plateau of Shaanxi Provincial Meteorological Bureau(2020Y-13)+1 种基金Open Research Fund of Shangluo Key Laboratory of Climate Adaptable City(SLSYS2022007)Shangluo Demonstration Project of Qinling Ecological Monitoring Service System(2020-611002-74-01-006200)。
文摘The study of land surface temperature(LST)is of great significance for ecosystem monitoring and ecological environmental protection in the Qinling Mountains of China.In view of the contradicting spatial and temporal resolutions in extracting LST from satellite remote sensing(RS)data,the areas with complex landforms of the Eastern Qinling Mountains were selected as the research targets to establish the correlation between the normalized difference vegetation index(NDVI)and LST.Detailed information on the surface features and temporal changes in the land surface was provided by Sentinel-2 and Sentinel-3,respectively.Based on the statistically downscaling method,the spatial scale could be decreased from 1000 m to 10 m,and LST with a Sentinel-3 temporal resolution and a 10 m spatial resolution could be retrieved.Comparing the 1 km resolution Sentinel-3 LST with the downscaling results,the 10 m LST downscaling data could accurately reflect the spatial distribution of the thermal characteristics of the original LST image.Moreover,the surface temperature data with a 10 m high spatial resolution had clear texture and obvious geomorphic features that could depict the detailed information of the ground features.The results showed that the average error was 5 K on April 16,2019 and 2.6 K on July 15,2019.The smaller error values indicated the higher vegetation coverage of summer downscaling result with the highest level on July 15.
文摘农田干旱具有范围广且对农业生产影响巨大的特点,对农田干旱的遥感实时动态监测是目前公认的难题。利用MODIS的地表温度(LST)产品和叶面积指数(LAI)产品,构建LST-LAI光谱特征空间,提出温度—叶面积干旱指数(temperature LAI drought index,TLDI)监测农田水分含量,并利用宁夏实测的0~10cm平均土壤含水量验证该指数的精度,结果表明:它们之间具有良好的相关性,R2的变化范围为0.43~0.86。与TVDI相比,TLDI弥补了作物封垄后TVDI因归一化植被指数(NDVI)饱和对农田水分监测精度降低的缺陷。此外,利用MODIS数据产品LST和LAI进行农田干旱监测,避免了使用MODIS原始数据的繁杂处理过程,初步为MODIS数据产品在农田干旱监测业务化运行探索出一条技术流程。