A trajectory generator based on vehicle kinematics model was presented and an integrated navigation simulation system was designed.Considering that the tight relation between vehicle motion and topography,a new trajec...A trajectory generator based on vehicle kinematics model was presented and an integrated navigation simulation system was designed.Considering that the tight relation between vehicle motion and topography,a new trajectory generator for vehicle was proposed for more actual simulation.Firstly,a vehicle kinematics model was built based on conversion of attitude vector in different coordinate systems.Then,the principle of common trajectory generators was analyzed.Besides,combining the vehicle kinematics model with the principle of dead reckoning,a new vehicle trajectory generator was presented,which can provide process parameters of carrier anytime and achieve simulation of typical actions of running vehicle.Moreover,IMU(inertial measurement unit) elements were simulated,including accelerometer and gyroscope.After setting up the simulation conditions,the integrated navigation simulation system was verified by final performance test.The result proves the validity and flexibility of this design.展开更多
A method used to detect anomaly and estimate the state of vehicle in driving was proposed.The kinematics model of the vehicle was constructed and nonholonomic constraint conditions were added,which refer to that once ...A method used to detect anomaly and estimate the state of vehicle in driving was proposed.The kinematics model of the vehicle was constructed and nonholonomic constraint conditions were added,which refer to that once the vehicle encounters the faults that could not be controlled,the constraint conditions are violated.Estimation equations of the velocity errors of the vehicle were given out to estimate the velocity errors of side and forward.So the stability of the whole vehicle could be judged by the velocity errors of the vehicle.Conclusions were validated through the vehicle experiment.This method is based on GPS/INS integrated navigation system,and can provide foundation for fault detections in unmanned autonomous vehicles.展开更多
A novel 6-PSS flexible parallel mechanism was presented,which employed wide-range flexure hinges as passive joints.The proposed mechanism features micron level positioning accuracy over cubic centimeter scale workspac...A novel 6-PSS flexible parallel mechanism was presented,which employed wide-range flexure hinges as passive joints.The proposed mechanism features micron level positioning accuracy over cubic centimeter scale workspace.A three-layer back-propagation(BP) neural network was utilized to the kinematics analysis,in which learning samples containing 1 280 groups of data based on stiffness-matrix method were used to train the BP model.The kinematics performance was accurately calculated by using the constructed BP model with 19 hidden nodes.Compared with the stiffness model,the simulation and numerical results validate that BP model can achieve millisecond level computation time and micron level calculation accuracy.The concept and approach outlined can be extended to a variety of applications.展开更多
This paper presents a systematic methodology for analyzing and optimizing an innovative antenna mount designed for phased array antennas, implemented through a novel 2-PSS&1-RR circular-rail parallel mechanism. In...This paper presents a systematic methodology for analyzing and optimizing an innovative antenna mount designed for phased array antennas, implemented through a novel 2-PSS&1-RR circular-rail parallel mechanism. Initially, a comparative motion analysis between the 3D model of the mount and its full-scale prototype is conducted to validate effectiveness. Given the inherent complexity, a kinematic mapping model is established between the mount and the crank-slider linkage, providing a guiding framework for subsequent analysis and optimization. Guided by this model, feasible inverse and forward solutions are derived, enabling precise identification of stiffness singularities. The concept of singularity distance is thus introduced to reflect the structural stiffness of the mount. Subsequently, also guided by the mapping model, a heuristic algorithm incorporating two backtracking procedures is developed to reduce the mount's mass. Additionally, a parametric finite-element model is employed to explore the relation between singularity distance and structural stiffness. The results indicate a significant reduction(about 16%) in the antenna mount's mass through the developed algorithm, while highlighting the singularity distance as an effective stiffness indicator for this type of antenna mount.展开更多
Twin-rotor cylinder-embedded piston engine is proposed for dealing with the sealing problems of rotors in twin-rotor piston engine where the existent mature sealing technologies for traditional reciprocating engine ca...Twin-rotor cylinder-embedded piston engine is proposed for dealing with the sealing problems of rotors in twin-rotor piston engine where the existent mature sealing technologies for traditional reciprocating engine can be applied.The quantity and forms of its sealing surfaces are reduced and simplified,and what's more,the advantages of twin-rotor piston engine are inherited,such as high power density and no valve mechanism.Given the motion law of two rotors,its kinematic model is established,and the general expression for some parameters related to engine performance,such as the trajectory,displacement,velocity and acceleration of the piston and centroid trajectory,angular displacement,velocity and acceleration of the rod are presented.By selecting different variation patterns of relative angle of two rotors,the relevant variables are compared.It can be concluded that by designing the relative angle function of two rotors,the volume variation of working chamber can be changed.However,a comprehensive consideration for friction and vibration is necessary because velocity and acceleration are quite different in the different functions,the swing magnitude of rod is proportional to link ratio λ,and the position of rod swing center is controlled by eccentricity e.In order to reduce the lateral force,a smaller value of λ should be selected in the case of the structure,and the value of e should be near 0.95.There is no relationship between the piston stroke and the variation process of relative angle of two rotors,the former is only proportional to the amplitude of relative angle of two rotors.展开更多
A practical approach for predicting the congestion boundary due to traffic incidents was proposed. Based on the kinematic wave theory and Van Aerde single-regime flow model, a model for estimating the congestion propa...A practical approach for predicting the congestion boundary due to traffic incidents was proposed. Based on the kinematic wave theory and Van Aerde single-regime flow model, a model for estimating the congestion propagation speed for the basic road segment was developed. Historical traffic flow data were used to analyze the time variant characteristics of the urban traffic flow for each road type. Then, the saturation flow rate was used for analyzing the impact of the traffic incident on the traversing traffic flow at the congestion area. The base congestion propagation speed for each road type was calculated based on field data, which were provided by the remote traffic microwave sensors(RTMS), floating car data(FCD) system and screen line survey. According to a comparative analysis of the congestion propagation speed, it is found that the expressway, major arterial, minor arterial and collector are decreasingly influenced by the traffic incident. Subsequently, the impact of turning movements at intersections on the congestion propagation was considered. The turning ratio was adopted to represent the impact of turning movements, and afterward the corresponding propagation pattern at intersections was analyzed. Finally, an implementation system was designed on a geographic information system(GIS) platform to display the characteristics of the congestion propagation over the network. The validation results show that the proposed approach is able to capture the congestion propagation properties in the actual road network.展开更多
基金Projects(90820302, 60805027, 61175064) supported by the National Natural Science Foundation of ChinaProject(2011ssxt231) supported by the Master Degree Thesis Innovation Project Foundation of Central South University, China+1 种基金Project(200805330005) supported by the Research Fund for the Doctoral Program of Higher Education, ChinaProject(2011FJ4043) supported by the Academician Foundation of Hunan Province, China
文摘A trajectory generator based on vehicle kinematics model was presented and an integrated navigation simulation system was designed.Considering that the tight relation between vehicle motion and topography,a new trajectory generator for vehicle was proposed for more actual simulation.Firstly,a vehicle kinematics model was built based on conversion of attitude vector in different coordinate systems.Then,the principle of common trajectory generators was analyzed.Besides,combining the vehicle kinematics model with the principle of dead reckoning,a new vehicle trajectory generator was presented,which can provide process parameters of carrier anytime and achieve simulation of typical actions of running vehicle.Moreover,IMU(inertial measurement unit) elements were simulated,including accelerometer and gyroscope.After setting up the simulation conditions,the integrated navigation simulation system was verified by final performance test.The result proves the validity and flexibility of this design.
基金Projects(90820302,60805027) supported by the National Natural Science Foundation of ChinaProject(200805330005) supported by Research Fund for Doctoral Program of Higher Education of China+1 种基金Projects(2009FJ4030) supported by Academician Foundation of Hunan Province,ChinaProject supported by the Freedom Explore Program of Central South University,China
文摘A method used to detect anomaly and estimate the state of vehicle in driving was proposed.The kinematics model of the vehicle was constructed and nonholonomic constraint conditions were added,which refer to that once the vehicle encounters the faults that could not be controlled,the constraint conditions are violated.Estimation equations of the velocity errors of the vehicle were given out to estimate the velocity errors of side and forward.So the stability of the whole vehicle could be judged by the velocity errors of the vehicle.Conclusions were validated through the vehicle experiment.This method is based on GPS/INS integrated navigation system,and can provide foundation for fault detections in unmanned autonomous vehicles.
基金Project(2002AA422260) supported by the National High Technology Research and Development Program of ChinaProject(2011-6) supported by CAST-HIT Joint Program,ChinaProject supported by Harbin Institute of Technology (HIT) Overseas Talents Introduction Program,China
文摘A novel 6-PSS flexible parallel mechanism was presented,which employed wide-range flexure hinges as passive joints.The proposed mechanism features micron level positioning accuracy over cubic centimeter scale workspace.A three-layer back-propagation(BP) neural network was utilized to the kinematics analysis,in which learning samples containing 1 280 groups of data based on stiffness-matrix method were used to train the BP model.The kinematics performance was accurately calculated by using the constructed BP model with 19 hidden nodes.Compared with the stiffness model,the simulation and numerical results validate that BP model can achieve millisecond level computation time and micron level calculation accuracy.The concept and approach outlined can be extended to a variety of applications.
基金financed by the National Key Research and Development Program of China,High efficiency space satellite charging system based on microwave wireless energy transfer technology(Grant No.2021YFB3900304)。
文摘This paper presents a systematic methodology for analyzing and optimizing an innovative antenna mount designed for phased array antennas, implemented through a novel 2-PSS&1-RR circular-rail parallel mechanism. Initially, a comparative motion analysis between the 3D model of the mount and its full-scale prototype is conducted to validate effectiveness. Given the inherent complexity, a kinematic mapping model is established between the mount and the crank-slider linkage, providing a guiding framework for subsequent analysis and optimization. Guided by this model, feasible inverse and forward solutions are derived, enabling precise identification of stiffness singularities. The concept of singularity distance is thus introduced to reflect the structural stiffness of the mount. Subsequently, also guided by the mapping model, a heuristic algorithm incorporating two backtracking procedures is developed to reduce the mount's mass. Additionally, a parametric finite-element model is employed to explore the relation between singularity distance and structural stiffness. The results indicate a significant reduction(about 16%) in the antenna mount's mass through the developed algorithm, while highlighting the singularity distance as an effective stiffness indicator for this type of antenna mount.
文摘Twin-rotor cylinder-embedded piston engine is proposed for dealing with the sealing problems of rotors in twin-rotor piston engine where the existent mature sealing technologies for traditional reciprocating engine can be applied.The quantity and forms of its sealing surfaces are reduced and simplified,and what's more,the advantages of twin-rotor piston engine are inherited,such as high power density and no valve mechanism.Given the motion law of two rotors,its kinematic model is established,and the general expression for some parameters related to engine performance,such as the trajectory,displacement,velocity and acceleration of the piston and centroid trajectory,angular displacement,velocity and acceleration of the rod are presented.By selecting different variation patterns of relative angle of two rotors,the relevant variables are compared.It can be concluded that by designing the relative angle function of two rotors,the volume variation of working chamber can be changed.However,a comprehensive consideration for friction and vibration is necessary because velocity and acceleration are quite different in the different functions,the swing magnitude of rod is proportional to link ratio λ,and the position of rod swing center is controlled by eccentricity e.In order to reduce the lateral force,a smaller value of λ should be selected in the case of the structure,and the value of e should be near 0.95.There is no relationship between the piston stroke and the variation process of relative angle of two rotors,the former is only proportional to the amplitude of relative angle of two rotors.
基金Project(2012CB725403)supported by the National Basic Research Program of ChinaProjects(51678045,51578052)supported by the National Natural Science Foundation of ChinaProject(2016JBM032)supported by the Fundamental Research Funds for the Central Universities,China
文摘A practical approach for predicting the congestion boundary due to traffic incidents was proposed. Based on the kinematic wave theory and Van Aerde single-regime flow model, a model for estimating the congestion propagation speed for the basic road segment was developed. Historical traffic flow data were used to analyze the time variant characteristics of the urban traffic flow for each road type. Then, the saturation flow rate was used for analyzing the impact of the traffic incident on the traversing traffic flow at the congestion area. The base congestion propagation speed for each road type was calculated based on field data, which were provided by the remote traffic microwave sensors(RTMS), floating car data(FCD) system and screen line survey. According to a comparative analysis of the congestion propagation speed, it is found that the expressway, major arterial, minor arterial and collector are decreasingly influenced by the traffic incident. Subsequently, the impact of turning movements at intersections on the congestion propagation was considered. The turning ratio was adopted to represent the impact of turning movements, and afterward the corresponding propagation pattern at intersections was analyzed. Finally, an implementation system was designed on a geographic information system(GIS) platform to display the characteristics of the congestion propagation over the network. The validation results show that the proposed approach is able to capture the congestion propagation properties in the actual road network.