期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
基于半监督哈希算法的交叉口交通状态识别 被引量:3
1
作者 张立立 王力 +1 位作者 赵琦 张玲玉 《交通运输系统工程与信息》 EI CSCD 北大核心 2020年第1期75-82,共8页
准确辨识交叉口交通状态是实施有效交通控制策略的前提.传统交通状态识别方法是利用占有率、排队等统计数据设计指标实现状态识别,存在只能从单一角度刻画交叉口交通需求的问题.对此,提出基于半监督哈希算法的交叉口交通状态识别方法.... 准确辨识交叉口交通状态是实施有效交通控制策略的前提.传统交通状态识别方法是利用占有率、排队等统计数据设计指标实现状态识别,存在只能从单一角度刻画交叉口交通需求的问题.对此,提出基于半监督哈希算法的交叉口交通状态识别方法.从原始数据丰富特征入手,构建交叉口有效检测区域的图像化模型;将交叉口交通状态识别转化为图像搜索问题,利用监督哈希算法实现基于部分标签信息的图像搜索,进而得到交叉口的交通状态;最后,利用仿真对该方法进行了验证.结果表明,所提方法在识别精度和速度上具有可行性和有效性. 展开更多
关键词 智能交通 交通状态识别 交叉口图像化 半监督哈希
在线阅读 下载PDF
基于非对称监督深度离散哈希的图像检索 被引量:5
2
作者 顾广华 霍文华 +1 位作者 苏明月 付灏 《电子与信息学报》 EI CSCD 北大核心 2021年第12期3530-3537,共8页
哈希广泛应用于图像检索任务。针对现有深度监督哈希方法的局限性,该文提出了一种新的非对称监督深度离散哈希(ASDDH)方法来保持不同类别之间的语义结构,同时生成二进制码。首先利用深度网络提取图像特征,根据图像的语义标签来揭示每对... 哈希广泛应用于图像检索任务。针对现有深度监督哈希方法的局限性,该文提出了一种新的非对称监督深度离散哈希(ASDDH)方法来保持不同类别之间的语义结构,同时生成二进制码。首先利用深度网络提取图像特征,根据图像的语义标签来揭示每对图像之间的相似性。为了增强二进制码之间的相似性,并保证多标签语义保持,该文设计了一种非对称哈希方法,并利用多标签二进制码映射,使哈希码具有多标签语义信息。此外,引入二进制码的位平衡性对每个位进行平衡,鼓励所有训练样本中的–1和+1的数目近似。在两个常用数据集上的实验结果表明,该方法在图像检索方面的性能优于其他方法。 展开更多
关键词 图像检索 监督哈希 语义保持 深度学习
在线阅读 下载PDF
基于深度残差网络与离散哈希的指静脉识别方法 被引量:2
3
作者 张娜 陈春宇 +3 位作者 徐璐 涂小妹 包晓安 吴彪 《浙江理工大学学报(自然科学版)》 2020年第4期549-556,共8页
针对传统卷积神经网络提取的特征不够充分、自学习特征稀疏导致指静脉识别精度和识别速度不高的问题,提出了一种基于深度残差网络和离散哈希的二元特征指静脉识别方法。首先,在深度残差网络模型训练过程中提出将加性角边缘损失函数作为... 针对传统卷积神经网络提取的特征不够充分、自学习特征稀疏导致指静脉识别精度和识别速度不高的问题,提出了一种基于深度残差网络和离散哈希的二元特征指静脉识别方法。首先,在深度残差网络模型训练过程中提出将加性角边缘损失函数作为监督信号,扩大类间差,缩小类内差;其次,将归一化后的指静脉图像输入改进的深度残差模型进行特征提取;然后,提出采用监督式离散哈希模型对实值特征进行离散化,获得二值化特征替代原有的实值特征;最后,采用哈明距离计算二值化特征与指静脉库中的模板间的匹配分数确定识别结果。实验结果表明:在MMCBNU6000数据集上,指静脉识别准确率达96.59%,同时模板尺寸缩减为1024 bit,是常用的实值特征模板尺寸的1/16;在FV-USM数据集上,模板尺寸缩减为1024 bit时,指静脉识别准确率达到95.37%。 展开更多
关键词 指静脉识别 深度残差网络 监督式离散哈希 二值化特征 哈明距离
在线阅读 下载PDF
基于卷积神经网络和监督核哈希的图像检索方法 被引量:36
4
作者 柯圣财 赵永威 +1 位作者 李弼程 彭天强 《电子学报》 EI CAS CSCD 北大核心 2017年第1期157-163,共7页
当前主流的图像检索方法采用的视觉特征,缺乏自主学习能力,导致其图像表达能力不强,此外,传统的特征索引方法检索效率较低,难以适用于大规模图像数据.针对这些问题,本文提出了一种基于卷积神经网络和监督核哈希的图像检索方法.首先,利... 当前主流的图像检索方法采用的视觉特征,缺乏自主学习能力,导致其图像表达能力不强,此外,传统的特征索引方法检索效率较低,难以适用于大规模图像数据.针对这些问题,本文提出了一种基于卷积神经网络和监督核哈希的图像检索方法.首先,利用卷积神经网络的学习能力挖掘训练图像内容的内在隐含关系,提取图像深层特征,增强特征的视觉表达能力和区分性;然后,利用监督核哈希方法对高维图像深层特征进行监督学习,并将高维特征映射到低维汉明空间中,生成紧致的哈希码;最后,在低维汉明空间中完成对大规模图像数据的有效检索.在Image Net-1000和Caltech-256数据集上的实验结果表明,本文方法能够有效地增强图像特征的表达能力,提高图像检索效率,优于当前主流方法. 展开更多
关键词 深度学习 图像检索 卷积神经网络 近似近邻检索 监督核哈希
在线阅读 下载PDF
面向遥感图像检索的级联池化自注意力研究 被引量:5
5
作者 吴刚 葛芸 +1 位作者 储珺 叶发茂 《光电工程》 CAS CSCD 北大核心 2022年第12期53-65,共13页
高分辨率遥感图像检索中,由于图像内容复杂,细节信息丰富,以致通过卷积神经网络提取的特征难以有效表达图像的显著信息。针对该问题,提出一种基于级联池化的自注意力模块,用来提高卷积神经网络的特征表达。首先,设计了级联池化自注意力... 高分辨率遥感图像检索中,由于图像内容复杂,细节信息丰富,以致通过卷积神经网络提取的特征难以有效表达图像的显著信息。针对该问题,提出一种基于级联池化的自注意力模块,用来提高卷积神经网络的特征表达。首先,设计了级联池化自注意力模块,自注意力在建立语义依赖关系的基础上,可以学习图像关键的显著特征,级联池化是在小区域最大池化的基础上再进行均值池化,将其用于自注意力模块,能够在关注图像显著信息的同时保留图像重要的细节信息,进而增强特征的判别能力。然后,将级联池化自注意力模块嵌入到卷积神经网络中,进行特征的优化和提取。最后,为了进一步提高检索效率,采用监督核哈希对提取的特征进行降维,并将得到的低维哈希码用于遥感图像检索。在UC Merced、AID和NWPU-RESISC45数据集上的实验结果表明,本文方法能够有效提高检索性能。 展开更多
关键词 遥感图像检索 级联池化 自注意力模块 监督核哈希 卷积神经网络
在线阅读 下载PDF
基于图像分割的肺结节CT图像哈希检索 被引量:2
6
作者 杨承启 段彦隆 +2 位作者 冯旭鹏 刘利军 黄青松 《信息技术》 2020年第4期51-55,共5页
基于相似图像的肺结节CT图像检索辅助诊断对肺结节的发现有着重要的作用。肺结节的诊断难度较大,通常需要充分利用图像的边缘、分叶、毛刺、纹理等各类信息。文中针对目前基于哈希方法的肺结节检索中存在的不能充分利用图像分割信息从... 基于相似图像的肺结节CT图像检索辅助诊断对肺结节的发现有着重要的作用。肺结节的诊断难度较大,通常需要充分利用图像的边缘、分叶、毛刺、纹理等各类信息。文中针对目前基于哈希方法的肺结节检索中存在的不能充分利用图像分割信息从而导致部分信息丢失问题做出了改进,提出了一种基于图像分割的肺结节图像哈希检索方法。实验结果表明,在72位哈希码长度时,达到了85.3%的平均准确率。并且,将文中图像分割模块应用于其他哈希检索方法时,平均准确率皆有一定的提升。 展开更多
关键词 肺结节 图像分割 有监督哈希 图像检索
在线阅读 下载PDF
基于三维卷积和哈希方法的视频检索算法 被引量:1
7
作者 陈汗青 李菲菲 陈虬 《电子科技》 2022年第4期35-39,66,共6页
视频信息检索与其他多媒体检索的最大不同在于视频信息量较大,因此进行视频间相似度计算时的计算量较大。此外,对视频特征的提取中常常忽略视频帧之间的时间相关性,从而导致特征提取不充分,影响视频检索的精度。为此,文中提出基于三维... 视频信息检索与其他多媒体检索的最大不同在于视频信息量较大,因此进行视频间相似度计算时的计算量较大。此外,对视频特征的提取中常常忽略视频帧之间的时间相关性,从而导致特征提取不充分,影响视频检索的精度。为此,文中提出基于三维卷积和哈希方法的视频检索方法。该方法构建了一个端到端的框架,使用三维卷积神经网络来提取视频中代表帧的特征,并将视频特征映射到低维的汉明空间中去,在汉明空间计算相似度。在两个视频数据集下的实验结果表明,相较于当前最新的视频检索算法,文中所提方法在精度上有较大的提升。 展开更多
关键词 视频检索 三维卷积 特征表示 哈希方法 监督学习 特征降维 汉明空间 相似度匹配
在线阅读 下载PDF
上下文感知的深度弱监督图像哈希表示学习方法 被引量:1
8
作者 刘萌 周迪 +2 位作者 田传发 齐孟津 聂秀山 《国防科技大学学报》 EI CAS CSCD 北大核心 2022年第3期85-92,共8页
针对现有深度监督图像哈希表示学习方法依赖于图像的类别信息,难以在现实中被广泛应用问题,利用与图像相关的标签信息作为监督信息,提出上下文感知的深度弱监督图像哈希表示学习方法。该方法一方面通过自适应捕获图像区域特征的相关上... 针对现有深度监督图像哈希表示学习方法依赖于图像的类别信息,难以在现实中被广泛应用问题,利用与图像相关的标签信息作为监督信息,提出上下文感知的深度弱监督图像哈希表示学习方法。该方法一方面通过自适应捕获图像区域特征的相关上下文来增强它们的表示能力,另一方面通过引入判别损失来提高学习到的哈希码表示的判别性。在现有两个公开数据集上的大量实验结果证明了该方法的有效性。 展开更多
关键词 图像哈希 弱监督学习 图像检索 区域上下文建模 判别损失
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部