期刊文献+
共找到21篇文章
< 1 2 >
每页显示 20 50 100
Fuzzy c-means clustering based on spatial neighborhood information for image segmentation 被引量:15
1
作者 Yanling Li Yi Shen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第2期323-328,共6页
Fuzzy c-means (FCM) algorithm is one of the most popular methods for image segmentation. However, the standard FCM algorithm is sensitive to noise because of not taking into account the spatial information in the im... Fuzzy c-means (FCM) algorithm is one of the most popular methods for image segmentation. However, the standard FCM algorithm is sensitive to noise because of not taking into account the spatial information in the image. An improved FCM algorithm is proposed to improve the antinoise performance of FCM algorithm. The new algorithm is formulated by incorporating the spatial neighborhood information into the membership function for clustering. The distribution statistics of the neighborhood pixels and the prior probability are used to form a new membership func- tion. It is not only effective to remove the noise spots but also can reduce the misclassified pixels. Experimental results indicate that the proposed algorithm is more accurate and robust to noise than the standard FCM algorithm. 展开更多
关键词 image segmentation fuzzy c-means spatial informa- tion. robust.
在线阅读 下载PDF
New two-dimensional fuzzy C-means clustering algorithm for image segmentation 被引量:4
2
作者 周鲜成 申群太 刘利枚 《Journal of Central South University of Technology》 EI 2008年第6期882-887,共6页
To solve the problem of poor anti-noise performance of the traditional fuzzy C-means (FCM) algorithm in image segmentation, a novel two-dimensional FCM clustering algorithm for image segmentation was proposed. In this... To solve the problem of poor anti-noise performance of the traditional fuzzy C-means (FCM) algorithm in image segmentation, a novel two-dimensional FCM clustering algorithm for image segmentation was proposed. In this method, the image segmentation was converted into an optimization problem. The fitness function containing neighbor information was set up based on the gray information and the neighbor relations between the pixels described by the improved two-dimensional histogram. By making use of the global searching ability of the predator-prey particle swarm optimization, the optimal cluster center could be obtained by iterative optimization, and the image segmentation could be accomplished. The simulation results show that the segmentation accuracy ratio of the proposed method is above 99%. The proposed algorithm has strong anti-noise capability, high clustering accuracy and good segment effect, indicating that it is an effective algorithm for image segmentation. 展开更多
关键词 image segmentation fuzzy c-means clustering particle swarm optimization two-dimensional histogram
在线阅读 下载PDF
Improved evidential fuzzy c-means method 被引量:4
3
作者 JIANG Wen YANG Tian +2 位作者 SHOU Yehang TANG Yongchuan HU Weiwei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第1期187-195,共9页
Dempster-Shafer evidence theory(DS theory) is widely used in brain magnetic resonance imaging(MRI) segmentation,due to its efficient combination of the evidence from different sources. In this paper, an improved MRI s... Dempster-Shafer evidence theory(DS theory) is widely used in brain magnetic resonance imaging(MRI) segmentation,due to its efficient combination of the evidence from different sources. In this paper, an improved MRI segmentation method,which is based on fuzzy c-means(FCM) and DS theory, is proposed. Firstly, the average fusion method is used to reduce the uncertainty and the conflict information in the pictures. Then, the neighborhood information and the different influences of spatial location of neighborhood pixels are taken into consideration to handle the spatial information. Finally, the segmentation and the sensor data fusion are achieved by using the DS theory. The simulated images and the MRI images illustrate that our proposed method is more effective in image segmentation. 展开更多
关键词 average fusion spatial information Dempster-Shafer evidence theory(DS theory) fuzzy c-means(FCM) magnetic resonance imaging(MRI) image segmentation
在线阅读 下载PDF
Partition region-based suppressed fuzzy C-means algorithm 被引量:1
4
作者 Kun Zhang Weiren Kong +4 位作者 Peipei Liu Jiao Shi Yu Lei Jie Zou Min Liu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第5期996-1008,共13页
Aimed at the problem that the traditional suppressed fuzzy C-means clustering algorithms ignore the real needs of different objects, applying the same suppressed parameter for modifying membership degrees of all the o... Aimed at the problem that the traditional suppressed fuzzy C-means clustering algorithms ignore the real needs of different objects, applying the same suppressed parameter for modifying membership degrees of all the objects, a novel partition region-based suppressed fuzzy C-means clustering algorithm with better capacity of adaptability and robustness is proposed in this paper. The model based on the real needs of different objects is built, making it clear to decide whether to proceed with further determination; in addition, the external user-defined suppressed parameter is automatically selected according to the intrinsic structural characteristic of each dataset, making the proposed method become robust to the fluctuations in the incoming dataset and initial conditions. Experimental results show that the proposed method is more robust than its counterparts and overcomes the weakness of the original suppressed clustering algorithm in most cases. 展开更多
关键词 shadowed set suppressed fuzzy c-means clustering automatically parameter selection soft computing techniques
在线阅读 下载PDF
Power interconnected system clustering with advanced fuzzy C-mean algorithm 被引量:6
5
作者 王洪梅 KIM Jae-Hyung +2 位作者 JUNG Dong-Yean LEE Sang-Min LEE Sang-Hyuk 《Journal of Central South University》 SCIE EI CAS 2011年第1期190-195,共6页
An advanced fuzzy C-mean (FCM) algorithm was proposed for the efficient regional clustering of multi-nodes interconnected systems. Due to various locational prices and regional coherencies for each node and point, m... An advanced fuzzy C-mean (FCM) algorithm was proposed for the efficient regional clustering of multi-nodes interconnected systems. Due to various locational prices and regional coherencies for each node and point, modified similarity measure was considered to gather nodes having similar characteristics. The similarity measure was needed to contain locafi0nal prices as well as regional coherency. In order to consider the two properties simultaneously, distance measure of fuzzy C-mean algorithm had to be modified. Regional clustering algorithm for interconnected power systems was designed based on the modified fuzzy C-mean algorithm. The proposed algorithm produces proper classification for the interconnected power system and the results are demonstrated in the example of IEEE 39-bus interconnected electricity system. 展开更多
关键词 fuzzy c-mean similarity measure distance measure interconnected system CLUSTERING
在线阅读 下载PDF
Kernel method-based fuzzy clustering algorithm 被引量:2
6
作者 WuZhongdong GaoXinbo +1 位作者 XieWeixin YuJianping 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第1期160-166,共7页
The fuzzy C-means clustering algorithm(FCM) to the fuzzy kernel C-means clustering algorithm(FKCM) to effectively perform cluster analysis on the diversiform structures are extended, such as non-hyperspherical data, d... The fuzzy C-means clustering algorithm(FCM) to the fuzzy kernel C-means clustering algorithm(FKCM) to effectively perform cluster analysis on the diversiform structures are extended, such as non-hyperspherical data, data with noise, data with mixture of heterogeneous cluster prototypes, asymmetric data, etc. Based on the Mercer kernel, FKCM clustering algorithm is derived from FCM algorithm united with kernel method. The results of experiments with the synthetic and real data show that the FKCM clustering algorithm is universality and can effectively unsupervised analyze datasets with variform structures in contrast to FCM algorithm. It is can be imagined that kernel-based clustering algorithm is one of important research direction of fuzzy clustering analysis. 展开更多
关键词 fuzzy clustering analysis kernel method fuzzy c-means clustering.
在线阅读 下载PDF
Integrated parallel forecasting model based on modified fuzzy time series and SVM 被引量:1
7
作者 Yong Shuai Tailiang Song Jianping Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第4期766-775,共10页
A dynamic parallel forecasting model is proposed, which is based on the problem of current forecasting models and their combined model. According to the process of the model, the fuzzy C-means clustering algorithm is ... A dynamic parallel forecasting model is proposed, which is based on the problem of current forecasting models and their combined model. According to the process of the model, the fuzzy C-means clustering algorithm is improved in outliers operation and distance in the clusters and among the clusters. Firstly, the input data sets are optimized and their coherence is ensured, the region scale algorithm is modified and non-isometric multi scale region fuzzy time series model is built. At the same time, the particle swarm optimization algorithm about the particle speed, location and inertia weight value is improved, this method is used to optimize the parameters of support vector machine, construct the combined forecast model, build the dynamic parallel forecast model, and calculate the dynamic weight values and regard the product of the weight value and forecast value to be the final forecast values. At last, the example shows the improved forecast model is effective and accurate. 展开更多
关键词 fuzzy c-means clustering fuzzy time series interval partitioning support vector machine particle swarm optimization algorithm parallel forecasting
在线阅读 下载PDF
Fuzzy identification of nonlinear dynamic system based on selection of important input variables 被引量:1
8
作者 LYU Jinfeng LIU Fucai REN Yaxue 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第3期737-747,共11页
Input variables selection(IVS) is proved to be pivotal in nonlinear dynamic system modeling. In order to optimize the model of the nonlinear dynamic system, a fuzzy modeling method for determining the premise structur... Input variables selection(IVS) is proved to be pivotal in nonlinear dynamic system modeling. In order to optimize the model of the nonlinear dynamic system, a fuzzy modeling method for determining the premise structure by selecting important inputs of the system is studied. Firstly, a simplified two stage fuzzy curves method is proposed, which is employed to sort all possible inputs by their relevance with outputs, select the important input variables of the system and identify the structure.Secondly, in order to reduce the complexity of the model, the standard fuzzy c-means clustering algorithm and the recursive least squares algorithm are used to identify the premise parameters and conclusion parameters, respectively. Then, the effectiveness of IVS is verified by two well-known issues. Finally, the proposed identification method is applied to a realistic variable load pneumatic system. The simulation experiments indi cate that the IVS method in this paper has a positive influence on the approximation performance of the Takagi-Sugeno(T-S) fuzzy modeling. 展开更多
关键词 Takagi-Sugeno(T-S)fuzzy modeling input variable selection(IVS) fuzzy identification fuzzy c-means clustering algorithm
在线阅读 下载PDF
基于FCM的快速模糊聚类算法研究 被引量:9
9
作者 匡平 朱清新 陈旭东 《电子测量与仪器学报》 CSCD 2007年第2期15-20,共6页
为改善FCM算法的运算性能、获得和原FCM算法等价的分类结果,本文提出了基于加权样本的fFCM(fast FCM)算法。此算法首先构造原待聚类集合的权集,并在权集上应用改进的FCM算法——WFCM(weighted FCM)算法快速获得和原FCM算法近似的分割结... 为改善FCM算法的运算性能、获得和原FCM算法等价的分类结果,本文提出了基于加权样本的fFCM(fast FCM)算法。此算法首先构造原待聚类集合的权集,并在权集上应用改进的FCM算法——WFCM(weighted FCM)算法快速获得和原FCM算法近似的分割结果;然后,将得到的分割结果作为FCM算法的初值再次利用FCM算法以获得最终的分割结果。理论证明和相关实验表明,fFCM不仅能获得和原FCM算法等价的分类结果,还具有良好的运算性能,具有广泛的适用性。 展开更多
关键词 模糊C均值聚类 WEIGHTED fuzzy c-means(WFCM) 加权样本 图像分割
在线阅读 下载PDF
基于并行Apriori的物流路径频繁模式研究 被引量:6
10
作者 曹菁菁 任欣欣 徐贤浩 《计算机工程与应用》 CSCD 北大核心 2019年第11期257-264,共8页
传统的频繁路径挖掘分析主要通过关联规则算法实现,但其在处理大型数据集时,会产生占用内存过多,数据处理速度慢等问题,对此提出一种基于Fuzzy c-means聚类算法的并行Apriori算法模型。该模型通过Fuzzy c-means算法完成对原始数据集的... 传统的频繁路径挖掘分析主要通过关联规则算法实现,但其在处理大型数据集时,会产生占用内存过多,数据处理速度慢等问题,对此提出一种基于Fuzzy c-means聚类算法的并行Apriori算法模型。该模型通过Fuzzy c-means算法完成对原始数据集的聚类分析,将同一区域的物流路径数据划分到内部相似度较高的数据类,并利用Apriori算法对各数据类中的频繁模式进行挖掘分析,进而获得各区域的物流频繁路径。同时通过Hadoop平台实现算法的并行化,有效提高算法运行效率和质量。通过对物流频繁路径的挖掘分析,使管理者更清楚货物流向,可为配送路径优化等决策提供支持。 展开更多
关键词 大数据 频繁路径 HADOOP fuzzy c-means聚类算法 APRIORI算法
在线阅读 下载PDF
融合多颜色空间分量的自适应彩色图像分割 被引量:5
11
作者 刘俊 马燕 +1 位作者 陈坤 李顺宝 《计算机工程与应用》 CSCD 2014年第5期185-189,251,共6页
提出了一种新的简单有效的融合多颜色分量的分割方法,首先在六个不同的颜色空间中选择最佳的待分割颜色分量,然后应用直方图和空间模糊C均值(SFCM)技术对不同颜色分量进行自适应初始分割,最后融合分割结果并进行区域合并。利用该算法在B... 提出了一种新的简单有效的融合多颜色分量的分割方法,首先在六个不同的颜色空间中选择最佳的待分割颜色分量,然后应用直方图和空间模糊C均值(SFCM)技术对不同颜色分量进行自适应初始分割,最后融合分割结果并进行区域合并。利用该算法在Berkeley图像库上进行了大量实验,实验结果表明,与当前一些经典分割算法Mean-shift、FCR、CTM等相比,利用该方法能够获得更好的分割结果以及更优的性能指标。 展开更多
关键词 彩色图像分割 直方图 空间模糊C均值(SFCM) 融合 多颜色空间分量 SPATIAL fuzzy c-means(SFCM)
在线阅读 下载PDF
自然环境下基于颜色聚类和颜色距离的死钩检测 被引量:3
12
作者 李海滨 李鹏 +1 位作者 李玉仙 孙应军 《仪器仪表学报》 EI CAS CSCD 北大核心 2012年第3期609-615,共7页
针对目前火车死钩检测无法自动实现的问题,提出了一种自然环境下基于颜色聚类和颜色距离的死钩检测方法。根据死钩和车厢颜色的对应关系,使用CCD(charge-coupled device)相机获取现场车厢图像并提取前景区域和背景区域的颜色特征,通过... 针对目前火车死钩检测无法自动实现的问题,提出了一种自然环境下基于颜色聚类和颜色距离的死钩检测方法。根据死钩和车厢颜色的对应关系,使用CCD(charge-coupled device)相机获取现场车厢图像并提取前景区域和背景区域的颜色特征,通过分析该颜色信息的差异来判断车厢之间的连接是否为死钩。首先获取特定区域的颜色信息,然后采用FCM(fuzzy C-mean)聚类算法对颜色信息进行分类得到该区域的单一颜色特征,最后根据HLC(hue,lightness,hromatic)颜色空间和人类颜色视觉的相似关系,计算颜色特征对的NBS(national bureau of standards)颜色距离。利用翻车作业现场火车车厢图像进行检测,实验结果验证了该方法具有对颜色差异的高敏感性和识别的准确性,可以满足实际死钩检测的需要。 展开更多
关键词 死钩检测 机器视觉 特征提取 模糊C均值(fuzzy c-mean FCM) NBS距离
在线阅读 下载PDF
井下基于动态指纹更新的指纹定位算法研究 被引量:4
13
作者 崔丽珍 王巧利 +1 位作者 郭倩倩 杨勇 《系统仿真学报》 CAS CSCD 北大核心 2021年第4期818-824,共7页
围绕煤矿井下环境特点,提出一种基于动态指纹更新的指纹定位算法。该算法运用FCM(Fuzzy C-Means Clustering)按信号分布特征划分井下定位区域,在各个子区域建立训练学习模型。在FCM算法基础上提出一种基于移动用户位置的HMM(Hidden Mark... 围绕煤矿井下环境特点,提出一种基于动态指纹更新的指纹定位算法。该算法运用FCM(Fuzzy C-Means Clustering)按信号分布特征划分井下定位区域,在各个子区域建立训练学习模型。在FCM算法基础上提出一种基于移动用户位置的HMM(Hidden Markov Model)运动信息序列模型,通过用户无意识地参与RSSI(Received Signal Strength Indication)序列的采集,实现指纹数据库的动态更新。运用具有自学习能力的ANFIS(Adaptive Network-based Fuzzy Inference System)算法定位未知节点。实验结果表明:所提的井下基于动态指纹更新的指纹定位算法定位精度可达2.6 m,满足煤矿井下巷道的实时定位需求。 展开更多
关键词 煤矿井下 指纹匹配定位 fuzzy c-means clustering算法 区域划分 指纹库更新 hidden Markov model运动轨迹模型 adaptive network-based fuzzy inference system定位模型 定位精度
在线阅读 下载PDF
一种基于各向异性扩散的图像分割算法研究
14
作者 陈金林 刘谢进 《天津师范大学学报(自然科学版)》 CAS 2013年第1期35-37,共3页
针对煤矿井下图像对比度小、纹理不清晰和数据量大等问题,根据各向异性扩散在图像处理中具有良好的边缘保持与增强的作用,提出一种基于各向异性扩散的图像分割算法.首先在图像分割前对原图像进行各向异性扩散运算,在消除原图像噪声的同... 针对煤矿井下图像对比度小、纹理不清晰和数据量大等问题,根据各向异性扩散在图像处理中具有良好的边缘保持与增强的作用,提出一种基于各向异性扩散的图像分割算法.首先在图像分割前对原图像进行各向异性扩散运算,在消除原图像噪声的同时,更好地划分了图像的边缘和纹理区域;然后提取图像的纹理特性运用到聚类算法中,从而对图像进行分割.实验证明:与未经扩散处理的分割算法相比,基于各向异性扩散的图像分割算法不仅改善了分割效果,而且提高了计算速度. 展开更多
关键词 图像分割 各向异性扩散 模糊C-均值(fuzzy c-mean FCM)聚类 边缘保持 纹理特征
在线阅读 下载PDF
基于ε邻域的三支决策聚类分析 被引量:4
15
作者 刘强 施虹 +1 位作者 王平心 杨习贝 《计算机工程与应用》 CSCD 北大核心 2019年第6期140-144,共5页
传统的聚类方法大都是二支决策,即决策一个元素属于一个类或者不属于一个类。然而在处理不确定性信息时,强制将其中的元素划分到一个类中,往往容易带来较高的决策风险。三支决策聚类将确定的元素放入核心域中,将不确定的元素放入边界域... 传统的聚类方法大都是二支决策,即决策一个元素属于一个类或者不属于一个类。然而在处理不确定性信息时,强制将其中的元素划分到一个类中,往往容易带来较高的决策风险。三支决策聚类将确定的元素放入核心域中,将不确定的元素放入边界域中延迟决策,可以有效地降低决策风险。利用数学形态学中膨胀与腐蚀的思想,提出了一种使用样本的ε邻域将二支聚类转化为三支聚类的方法。该方法在二支聚类的结果上,利用每个类中元素的ε邻域收缩得到核心域,扩张得到边界域。在UCI数据集上的实验结果显示该方法可以降低聚类结果的DBI,提高聚类结果的平均轮廓系数和准确率。 展开更多
关键词 三支聚类 邻域 K-MEANS聚类 k-medoid聚类 fuzzy c-means聚类
在线阅读 下载PDF
Sorting radar signal from symmetry clustering perspective 被引量:13
16
作者 Mohaned Giess Shokrallah Ahmed Bin Tang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第4期690-696,共7页
The main function of electronic support measure system is to detect threating signals in order to take countermeasures against them. To accomplish this objective, a process of associating each interleaved pulse with i... The main function of electronic support measure system is to detect threating signals in order to take countermeasures against them. To accomplish this objective, a process of associating each interleaved pulse with its emitter must be done. This process is termed sorting or de-interleaving. A novel point symmetry based radar sorting (PSBRS) algorithm is addressed. In order to deal with all kinds of radar signals, the symmetry measure distance is used to cluster pulses instead of the conventional Euclidean distance. The reference points of the symmetrical clusters are initialized by the alternative fuzzy c-means (AFCM) algorithm to ameliorate the effects of noise and the false sorting. Besides, the density filtering (DF) algorithm is proposed to discard the noise pulses or clutter. The performance of the algorithm is evaluated under the effects of noise and missing pulses. It has been observed that the PSBRS algorithm can cope with a large number of noise pulses and it is completely independent of missing pulses. Finally, PSBRS is compared with some benchmark algorithms, and the simulation results reveal the feasibility and efficiency of the algorithm. 展开更多
关键词 sorting radar pulse SYMMETRY alternative fuzzy c-means noise missing pulse
在线阅读 下载PDF
Adaptive WNN aerodynamic modeling based on subset KPCA feature extraction 被引量:4
17
作者 孟月波 邹建华 +1 位作者 甘旭升 刘光辉 《Journal of Central South University》 SCIE EI CAS 2013年第4期931-941,共11页
In order to accurately describe the dynamic characteristics of flight vehicles through aerodynamic modeling, an adaptive wavelet neural network (AWNN) aerodynamic modeling method is proposed, based on subset kernel pr... In order to accurately describe the dynamic characteristics of flight vehicles through aerodynamic modeling, an adaptive wavelet neural network (AWNN) aerodynamic modeling method is proposed, based on subset kernel principal components analysis (SKPCA) feature extraction. Firstly, by fuzzy C-means clustering, some samples are selected from the training sample set to constitute a sample subset. Then, the obtained samples subset is used to execute SKPCA for extracting basic features of the training samples. Finally, using the extracted basic features, the AWNN aerodynamic model is established. The experimental results show that, in 50 times repetitive modeling, the modeling ability of the method proposed is better than that of other six methods. It only needs about half the modeling time of KPCA-AWNN under a close prediction accuracy, and can easily determine the model parameters. This enables it to be effective and feasible to construct the aerodynamic modeling for flight vehicles. 展开更多
关键词 WAVELET neural network fuzzy c-means clustering kernel principal components analysis feature extraction aerodynamic modeling
在线阅读 下载PDF
A model to determining the remaining useful life of rotating equipment,based on a new approach to determining state of degradation 被引量:3
18
作者 Saeed RAMEZANI Alireza MOINI +1 位作者 Mohamad RIAHI Adolfo Crespo MARQUEZ 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第8期2291-2310,共20页
Condition assessment is one of the most significant techniques of the equipment’s health management.Also,in PHM methodology cycle,which is a developed form of CBM,condition assessment is the most important step of th... Condition assessment is one of the most significant techniques of the equipment’s health management.Also,in PHM methodology cycle,which is a developed form of CBM,condition assessment is the most important step of this cycle.In this paper,the remaining useful life of the equipment is calculated using the combination of sensor information,determination of degradation state and forecasting the proposed health index.The combination of sensor information has been carried out using a new approach to determining the probabilities in the Dempster-Shafer combination rules and fuzzy c-means clustering method.Using the simulation and forecasting of extracted vibration-based health index by autoregressive Markov regime switching(ARMRS)method,final health state is determined and the remaining useful life(RUL)is estimated.In order to evaluate the model,sensor data provided by FEMTO-ST Institute have been used. 展开更多
关键词 remaining useful life(RUL) prognostics and health management(PHM) autoregressive markov regime switching(ARMRS) health index(HI) Dempster-Shafer theory fuzzy c-means(FCM) Kurtosis-entropy DEGRADATION
在线阅读 下载PDF
Instance reduction for supervised learning using input-output clustering method
19
作者 YODJAIPHET Anusorn THEERA-UMPON Nipon AUEPHANWIRIYAKUL Sansanee 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第12期4740-4748,共9页
A method that applies clustering technique to reduce the number of samples of large data sets using input-output clustering is proposed.The proposed method clusters the output data into groups and clusters the input d... A method that applies clustering technique to reduce the number of samples of large data sets using input-output clustering is proposed.The proposed method clusters the output data into groups and clusters the input data in accordance with the groups of output data.Then,a set of prototypes are selected from the clustered input data.The inessential data can be ultimately discarded from the data set.The proposed method can reduce the effect from outliers because only the prototypes are used.This method is applied to reduce the data set in regression problems.Two standard synthetic data sets and three standard real-world data sets are used for evaluation.The root-mean-square errors are compared from support vector regression models trained with the original data sets and the corresponding instance-reduced data sets.From the experiments,the proposed method provides good results on the reduction and the reconstruction of the standard synthetic and real-world data sets.The numbers of instances of the synthetic data sets are decreased by 25%-69%.The reduction rates for the real-world data sets of the automobile miles per gallon and the 1990 census in CA are 46% and 57%,respectively.The reduction rate of 96% is very good for the electrocardiogram(ECG) data set because of the redundant and periodic nature of ECG signals.For all of the data sets,the regression results are similar to those from the corresponding original data sets.Therefore,the regression performance of the proposed method is good while only a fraction of the data is needed in the training process. 展开更多
关键词 instance reduction input-output clustering fuzzy c-means clustering support vector regression supervised learning
在线阅读 下载PDF
IFCEM based recognition method for target with interval-overlapped hybrid attributes
20
作者 GUAN Xin LI Shuangming +1 位作者 SUN Guidong WANG Haibin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第2期408-421,共14页
When the attributes of unknown targets are not just numerical attributes,but hybrid attributes containing linguistic attributes,the existing recognition methods are not effective.In addition,it is more difficult to id... When the attributes of unknown targets are not just numerical attributes,but hybrid attributes containing linguistic attributes,the existing recognition methods are not effective.In addition,it is more difficult to identify the unknown targets densely distributed in the feature space,especially when there is interval overlap between attribute measurements of different target classes.To address these problems,a novel method based on intuitionistic fuzzy comprehensive evaluation model(IFCEM)is proposed.For numerical attributes,targets in the database are divided into individual classes and overlapping classes,and for linguistic attributes,continuous interval-valued linguistic term set(CIVLTS)is used to describe target characteristic.A cloud modelbased method and an area-based method are proposed to obtain intuitionistic fuzzy decision information of query target on numerical attributes and linguistic attributes respectively.An improved inverse weighted kernel fuzzy c-means(IWK-FCM)algorithm is proposed for solution of attribute weight vector.The possibility matrix is applied to determine the identity and category of query target.Finally,a case study composed of parameter sensitivity analysis,recognition accuracy analysis.and comparison with other methods,is taken to verify the superiority of the proposed method. 展开更多
关键词 intuitionistic fuzzy comprehensive evaluation model(IFCEM) interval overlapping cloud model area-based method inverse weighted kernel fuzzy c-means(IWK-FCM)
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部