期刊文献+
共找到223篇文章
< 1 2 12 >
每页显示 20 50 100
改进KPCA结合多目标蜻蜓算法优化BP神经网络的联合收割机故障诊断
1
作者 孟桐 雷鸣 +2 位作者 宋文广 王丹丹 黄梦可 《机电工程》 北大核心 2025年第7期1258-1267,共10页
针对联合收割机数据维度高、诊断效果不理想的问题,提出了一种改进核主成分分析(KPCA)结合多目标蜻蜓算法(MTDA)优化反向传播(BP)神经网络的联合收割机故障诊断方法。首先,采用Morlet小波作为KPCA的核函数,其融合了高斯包络与正弦波特性... 针对联合收割机数据维度高、诊断效果不理想的问题,提出了一种改进核主成分分析(KPCA)结合多目标蜻蜓算法(MTDA)优化反向传播(BP)神经网络的联合收割机故障诊断方法。首先,采用Morlet小波作为KPCA的核函数,其融合了高斯包络与正弦波特性,能够有效捕捉收割机的瞬态变化与局部异常,从而提取出了不同工况下的主要成分,降低了数据维度,减少了冗余信息;其次,针对传统蜻蜓算法的局限性,引入了自适应变异策略、非线性惯性权重及动态收敛因子,构建了多目标蜻蜓算法,对Schaffer、Michalewicz和Rastrigin函数进行了求解,验证了MTDA能显著提升全局与局部搜索平衡能力;最后,利用MTDA对BP神经网络的权值和阈值进行了优化,构建了MTDA-BP综合故障诊断模型,将模型应用于联合收割机的故障诊断中,通过实验验证了其有效性。研究结果表明:故障诊断平均精度达到96.7%,通过与当前主流方法的实验对比分析,采用Micro-average ROC进行了模型评价,结果显示该模型的曲线下面积(AUC)为0.967。实验结果充分证明了该模型在检测精确度与泛化性方面均具有显著优势,该研究也为解决智能农业机械中的诊断提供了一种有效的方法。 展开更多
关键词 核主成分分析 MORLET小波 多目标蜻蜓算法 反向传播神经网络 联合收割机 故障诊断
在线阅读 下载PDF
基于KPCA-SENet的晶闸管退化特征提取与表征方法
2
作者 陈权 吴骏 +3 位作者 陈忠 祝琳 郑常宝 黄宇 《半导体技术》 北大核心 2025年第8期851-859,共9页
晶闸管长期使用后会出现不可逆的性能下降,达到一定阈值后引发电路故障的概率会大幅上升,给特高压系统带来严重风险。为了保证特高压电网系统的安全运行,晶闸管的可靠性分析与退化状态评估尤为重要。通过仿真模拟加速寿命试验获取晶闸... 晶闸管长期使用后会出现不可逆的性能下降,达到一定阈值后引发电路故障的概率会大幅上升,给特高压系统带来严重风险。为了保证特高压电网系统的安全运行,晶闸管的可靠性分析与退化状态评估尤为重要。通过仿真模拟加速寿命试验获取晶闸管的通态压降、反向恢复电荷、反向漏电流及反向恢复峰值电流的退化数据。首先通过结合局部均值分解(LMD)和自适应阈值对称小波基(symN)的方法进行降噪预处理,再通过结合核主成分分析(KPCA)与通道域注意力机制(SENet)对退化特征进行提取与融合,最后通过转换函数拟合建立综合退化指标(CDI),实现对晶闸管的退化表征。采用多个指标对该方法进行验证,结果表明CDI与退化特征参数及退化时间呈现出高度的相关性,证实了该方法的有效性。 展开更多
关键词 晶闸管 可靠性 特征提取 退化 表征方法 核主成分分析与通道注意力机制(kpca-SENet)
在线阅读 下载PDF
基于KPCA-SAE-BP模型的有源干扰识别算法
3
作者 赵忠臣 刘利民 +2 位作者 解辉 韩壮志 荆贺 《现代防御技术》 北大核心 2025年第3期159-166,共8页
针对强噪声环境下雷达新型有源干扰识别准确率不高的问题,提出了一种KPCA-SAE-BP网络算法。提取干扰信号时域、频域、波形域、小波域、双谱域等特征构建67维输入空间,经过核主成分分析(kernel principal component analysis,KPCA)将高... 针对强噪声环境下雷达新型有源干扰识别准确率不高的问题,提出了一种KPCA-SAE-BP网络算法。提取干扰信号时域、频域、波形域、小波域、双谱域等特征构建67维输入空间,经过核主成分分析(kernel principal component analysis,KPCA)将高维数据进行非线性降维与重构,利用SAE-BP神经网络完成分类识别。仿真结果表明,在干噪比(JNR)大于-1 dB的强噪声环境中,KPCA-SAE-BP网络算法对6种新型有源干扰的识别准确率达到90%以上,训练与识别时间少于0.7 s。相同参数条件下,与经典BP神经网络、SAE-BP网络、KPCA-BP网络、GA-BP网络相比,具有更好的检测识别性能。 展开更多
关键词 有源干扰识别 核主成分分析 堆叠自编码器 反向传播神经网络 特征提取 特征降维
在线阅读 下载PDF
基于加权核主成分TOPSIS方法的舰艇防空威胁评估 被引量:14
4
作者 陈维义 王少蕾 周菲 《海军工程大学学报》 CAS 北大核心 2014年第1期87-91,107,共6页
为了能快速准确地对来袭的空中目标进行威胁评估,提出了一种基于加权的核主成分TOPSIS的威胁评估排序方法。针对水面舰艇防空作战中来袭目标的特点,确定了防空威胁评估指标,并对其进行了相应的量化,利用加权核主成分分析实现指标数据的... 为了能快速准确地对来袭的空中目标进行威胁评估,提出了一种基于加权的核主成分TOPSIS的威胁评估排序方法。针对水面舰艇防空作战中来袭目标的特点,确定了防空威胁评估指标,并对其进行了相应的量化,利用加权核主成分分析实现指标数据的降维,之后按照核主元方差贡献率加权进行TOPSIS法对来袭目标进行威胁评估与排序。实例验证表明:利用该方法可以避免传统方法中人为确定各威胁指标权重时引入的主观性,同时,对指标数据的降维处理降低了评估的复杂性,提高了评估的实时性,为舰艇防空作战威胁评估提供了一条新的有效途径。 展开更多
关键词 防空作战 威胁评估 核主成分分析 TOPsis
在线阅读 下载PDF
基于KPCA-SIFT描述符的图像配准 被引量:6
5
作者 李伟 沈振康 《信号处理》 CSCD 北大核心 2009年第4期644-647,共4页
SIFT描述符是一种鲁棒的局部特征描述符,利用核主成分分析的特征提取方法,对每个特征点的SIFT特征进行降维处理。核主成分分析采用非线性方法提取主成分,是主成分分析的改进算法。本文描述了一种基于KPCA-SIFT描述符的高精度图像配准算... SIFT描述符是一种鲁棒的局部特征描述符,利用核主成分分析的特征提取方法,对每个特征点的SIFT特征进行降维处理。核主成分分析采用非线性方法提取主成分,是主成分分析的改进算法。本文描述了一种基于KPCA-SIFT描述符的高精度图像配准算法,通过对KPCA-SIFT特征的相似性度量得到匹配点对,再根据这些匹配点对对图像进行配准。实验结果表明,KPCA-SIFT特征精确、稳定、可靠,可以得到高精度的配准。 展开更多
关键词 图像配准 siFT描述符 主成分分析 PCA-siFT 核主成分分析 kpca-siFT
在线阅读 下载PDF
基于String Kernel和KPCA的负实例语法特征提取算法
6
作者 吕威 林文昶 +1 位作者 姚正安 李磊 《计算机工程与应用》 CSCD 北大核心 2009年第20期136-139,共4页
提出通过String Kernel方法把负实例语法数据库中的负实例转化成核矩阵,再用Kernel Principal Component Analysis(KPCA)对转换的核矩阵进行特征提取,进而可将原始负实例数据库按照这些特征分成多个容量较小的特征表。通过构造负实例特... 提出通过String Kernel方法把负实例语法数据库中的负实例转化成核矩阵,再用Kernel Principal Component Analysis(KPCA)对转换的核矩阵进行特征提取,进而可将原始负实例数据库按照这些特征分成多个容量较小的特征表。通过构造负实例特征索引表设计了一个分类器,待检查的句子通过此分类器被分配到某个负实例特征表里进行匹配搜索,而此特征表的特征属性数和记录数要远远小于原始负实例数据库中的相应数目,从而大大提高了检查的速度,同时不影响语法检查的精度。通过比较测试,可看出提出的方法在保证语法检查精确度的同时有更快的速度。 展开更多
关键词 STRING kernel 核主成分分析 负实例 特征提取
在线阅读 下载PDF
Modeling and monitoring of nonlinear multi-mode processes based on similarity measure-KPCA 被引量:10
7
作者 WANG Xiao-gang HUANG Li-wei ZHANG Ying-wei 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第3期665-674,共10页
A new modeling and monitoring approach for multi-mode processes is proposed.The method of similarity measure(SM) and kernel principal component analysis(KPCA) are integrated to construct SM-KPCA monitoring scheme,wher... A new modeling and monitoring approach for multi-mode processes is proposed.The method of similarity measure(SM) and kernel principal component analysis(KPCA) are integrated to construct SM-KPCA monitoring scheme,where SM method serves as the separation of common subspace and specific subspace.Compared with the traditional methods,the main contributions of this work are:1) SM consisted of two measures of distance and angle to accommodate process characters.The different monitoring effect involves putting on the different weight,which would simplify the monitoring model structure and enhance its reliability and robustness.2) The proposed method can be used to find faults by the common space and judge which mode the fault belongs to by the specific subspace.Results of algorithm analysis and fault detection experiments indicate the validity and practicability of the presented method. 展开更多
关键词 process monitoring kernel principal component analysis (kpca similarity measure subspace separation
在线阅读 下载PDF
Online Contribution Rate Based Fault Diagnosis for Nonlinear Industrial Pro cesses 被引量:12
8
作者 PENG Kai-Xiang ZHANG Kai LI Gang 《自动化学报》 EI CSCD 北大核心 2014年第3期423-430,共8页
在过去的十年,核主管部件分析(KPCA ) 在监视区域的数据驱动的过程相当流行地出现了。庞大的工作被做了显示出它的简洁,可行性,和有效性。然而,核诡计的介绍使直接为差错诊断采用传统的贡献阴谋不可能。在这份报纸,根据重游并且分... 在过去的十年,核主管部件分析(KPCA ) 在监视区域的数据驱动的过程相当流行地出现了。庞大的工作被做了显示出它的简洁,可行性,和有效性。然而,核诡计的介绍使直接为差错诊断采用传统的贡献阴谋不可能。在这份报纸,根据重游并且分析存在, KPCA 相关的诊断来临,新贡献率基于方法被建议它能清楚地解释有缺点的变量。而且,为联机非线性的诊断的一个计划被建立。最后,连续搅动的坦克反应堆(CSTR ) 上的案例研究基准被使用存取新方法论的有效性,在有传统的线性方法的比较也被包含的地方。 展开更多
关键词 故障诊断 非线性 搅拌釜式反应器 工业 费率 核主成分分析 kpca 数据驱动
在线阅读 下载PDF
基于KPCA-LSSVM的回采工作面瓦斯涌出量的预测 被引量:13
9
作者 陈巧军 余浩 +2 位作者 李艳昌 谭依佳 李奕 《中国安全生产科学技术》 CAS CSCD 北大核心 2024年第4期78-84,共7页
为了提高瓦斯涌出量预测精度,针对瓦斯涌出量影响因素具有线性重叠、高维非线性等问题,提出使用核主成分分析法(KPCA)对影响因素进行非线性降维。选取沈阳某矿30组样本数据,以前24组数据作为训练集,后6组数据作为测试集,将确定后的核主... 为了提高瓦斯涌出量预测精度,针对瓦斯涌出量影响因素具有线性重叠、高维非线性等问题,提出使用核主成分分析法(KPCA)对影响因素进行非线性降维。选取沈阳某矿30组样本数据,以前24组数据作为训练集,后6组数据作为测试集,将确定后的核主成分作为最小二乘支持向量机(LSSVM)的输入变量,建立KPCA-LSSVM预测模型,将预测结果与PCA-LSSVM、LSSVM、多元非线性回归、KPCA-BP神经网络、PCA-BP神经网络以及BP神经网络预测结果进行对比。以最大相对误差绝对值作为模型预测精度的评价指标。研究结果表明:当选取前4个核主成分时,即达到模型训练要求。KPCA-LSSVM模型的预测最大相对误差绝对值为5.89%,预测精度均优于其他6种对比模型。研究结果可为实现瓦斯涌出量高精度预测提供参考。 展开更多
关键词 瓦斯涌出量的预测 核主成分分析法(kpca) 最小二乘支持向量机(LSSVM) 相对误差绝对值
在线阅读 下载PDF
基于KPCA-GA-BP模型的页岩气集输管道的内腐蚀速率预测 被引量:4
10
作者 周逸轩 彭星煜 +1 位作者 耿月华 王思汗 《腐蚀与防护》 CAS CSCD 北大核心 2024年第4期63-68,共6页
针对页岩气集输管道的内腐蚀,提出了一种基于KPCA-GA-BP组合模型的腐蚀速率预测算法。以某条页岩气集输管道的检测结果作为训练数据,运用反向传播(BP)神经网络建立预测模型,运用遗传算法(GA)优化了神经网络权值和阈值的初始值,运用核主... 针对页岩气集输管道的内腐蚀,提出了一种基于KPCA-GA-BP组合模型的腐蚀速率预测算法。以某条页岩气集输管道的检测结果作为训练数据,运用反向传播(BP)神经网络建立预测模型,运用遗传算法(GA)优化了神经网络权值和阈值的初始值,运用核主成分分析法(KPCA)对数据进行了降维,在模型建立的过程中不断优化提升模型的预测精度,采用所建模型对另一条相邻管道进行预测并开挖验证。结果表明:选择TRAINGDM作为训练函数,隐含层节点为(8,1),遗传算法进化数为50,种群规模为100,交叉概率为0.3,变异概率为0.2,运用KPCA将数据从7维降为4维后,此模型的均方误差最低为0.12,当该模型用于相邻管道的预测时,均方误差为0.14。运用KPCAGA-BP模型,对页岩气集输管道内腐蚀速率进行预测具有一定的准确性,此模型可用于辅助指导现场内腐蚀直接评价等相关工作。 展开更多
关键词 页岩气集输管道 内腐蚀速率 BP神经网络 遗传算法 核主成分分析法(kpca) 均方误差(MSE)
在线阅读 下载PDF
基于KPCA和数据处理组合方法神经网络的半球谐振陀螺温度建模补偿方法 被引量:2
11
作者 张晨 汪立新 孔祥玉 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第7期1336-1345,共10页
针对半球谐振陀螺(HRG)的温度建模与补偿问题,提出基于核主成分分析(KPCA)和数据处理组合方法(GMDH)神经网络的建模补偿方法.通过分析HRG的温度特性和大数据特征,初步确定网络模型的特征向量.为了去除HRG输出数据的相关性和冗余性,引入K... 针对半球谐振陀螺(HRG)的温度建模与补偿问题,提出基于核主成分分析(KPCA)和数据处理组合方法(GMDH)神经网络的建模补偿方法.通过分析HRG的温度特性和大数据特征,初步确定网络模型的特征向量.为了去除HRG输出数据的相关性和冗余性,引入KPCA并降低特征向量维度.将特征向量代入GMDH神经网络训练,区分训练集和验证集以确定网络权值和网络结构,实现HRG温度漂移的建模与补偿.实验结果表明,单一样本预测时,所提方法预测效果明显好于传统多项式模型;多样本预测时,在4种不同训练样本下,所提方法相比传统多项式模型精度分别提升了48.5%、54.0%、56.3%、68.4%,相比GMDH模型分别提升了3.6%、5.1%、3.8%、8.8%.所提方法能够有效提高HRG在变温工况下的测量精度. 展开更多
关键词 半球谐振陀螺(HRG) 核主成分分析(kpca) 数据处理组合方法(GMDH) 温度建模与补偿 测量精度
在线阅读 下载PDF
基于KPCA降维分析的特高拱坝监测模型 被引量:3
12
作者 王子轩 陈德辉 +2 位作者 欧斌 杨石勇 傅蜀燕 《人民长江》 北大核心 2024年第10期246-254,共9页
为提高大坝变形预测精度,针对变形数据影响因子间的多重共线性问题,构建了基于核主成分分析(KPCA)、全局搜索策略的鲸鱼优化算法(GSWOA)和门控循环单元(GRU)的组合预测模型。首先利用KPCA对高维变形序列进行降维处理,同时使用GSWOA对GR... 为提高大坝变形预测精度,针对变形数据影响因子间的多重共线性问题,构建了基于核主成分分析(KPCA)、全局搜索策略的鲸鱼优化算法(GSWOA)和门控循环单元(GRU)的组合预测模型。首先利用KPCA对高维变形序列进行降维处理,同时使用GSWOA对GRU参数进行优化,进而构建出最优变形预测模型。以小湾特高拱坝变形数据为例,将KPCA-GSWOA-GRU模型与KPCA-WOA-GRU模型、PCA-GSWOA-GRU模型以及传统模型进行预测拟合对比。结果表明:KPCA-GSWOA-GRU模型有效降低了多重共线性问题,且在均方根误差(RMSE)、平均绝对误差(MAE)、平均绝对百分比误差(MAPE)和决定系数(R^(2))等方面均优于对比模型。 展开更多
关键词 特高拱坝 变形监测 降维分析 核主成分分析(kpca) 全局搜索策略的鲸鱼优化算法(GSWOA) 门控循环单元(GRU) 小湾水电站
在线阅读 下载PDF
非盲源KPCA剩余噪声比阈值层析SAR成像方法
13
作者 刘慧 程碧辉 +2 位作者 庞蕾 郭子夜 王潜 《现代雷达》 CSCD 北大核心 2024年第5期13-18,共6页
合成孔径雷达(SAR)层析成像技术是基于干涉SAR测量技术发展而来的先进三维成像技术。层析SAR通过第三维反演技术将叠掩在同一距离-方位分辨单元的散射体进行分离而实现SAR的三维成像。因此,叠掩在同一距离-方位分辨单元的散射体分离是... 合成孔径雷达(SAR)层析成像技术是基于干涉SAR测量技术发展而来的先进三维成像技术。层析SAR通过第三维反演技术将叠掩在同一距离-方位分辨单元的散射体进行分离而实现SAR的三维成像。因此,叠掩在同一距离-方位分辨单元的散射体分离是层析成像的关键。文中提出了一种非盲源散射体分离算法,结合核主成分分析和剩余噪声比阈值,估计同一距离-方位分辨单元内散射体的个数,并反演其位置。在满足完整度的同时,尽可能抑制噪声。该方法利用核主成分分析,人为增加核矩阵维度,从而减少系统的导向向量偏差;并且加入剩余成分中噪声强度比的计算作为算法的约束条件,从而降低了噪声信号误判的可能性。实验结果表明,所提方法在各个方面都优于传统的层析反演方法,并且高度重建精度得到一定程度的提高。 展开更多
关键词 非线性散射体分离 层析合成孔径雷达 核主成分分析 合成孔径雷达三维成像
在线阅读 下载PDF
改进粒子群优化算法结合BP神经网络模型的水体透射光谱总磷浓度预测研究 被引量:3
14
作者 张国浩 王彩玲 +1 位作者 王洪伟 于涛 《光谱学与光谱分析》 北大核心 2025年第2期394-402,共9页
使用光谱数据结合融合算法对水体污染物含量进行准确检测以保护水资源已成为一个关键问题。然而,光谱数据的高维特性以及模型的不稳定常常导致预测效果不佳,无法准确的进行检测。本研究提出了一种环保和准确的方法,实现对长江水体中总... 使用光谱数据结合融合算法对水体污染物含量进行准确检测以保护水资源已成为一个关键问题。然而,光谱数据的高维特性以及模型的不稳定常常导致预测效果不佳,无法准确的进行检测。本研究提出了一种环保和准确的方法,实现对长江水体中总磷浓度含量的预测。具体而言,首先对测得的长江水质光谱数据进行最大最小归一化和均值中心化两种预处理操作,在消除不同数据量级差异的同时去除了噪声,确保了数据的一致性和可靠性。其次,为了解决光谱数据的高维度问题,采用了核主成分分析(KPCA)方法来降低数据维度并提取特征。KPCA方法通过在高维度的空间中找到一个分类平面,选出能代表原始数据99.42%信息量的前6个主成分,用于后续预测模型的训练。接着在原始粒子群算法的基础上引入了粒子初始化规则、多种群竞争策略、参数自适应更新策略、种群多样性引导策略和粒子变异机制,提高了粒子群的寻优能力,降低粒子陷入局部最优解的概率。并使用改进后的粒子群算法对BP神经网络(BPNN)中的初始化权重和参数大小进行寻优,从而加快网络的收敛效果,提高预测能力。最后,使用本研究所提出的预测模型对测试集中的样本进行总磷浓度的预测,实验结果得到R^(2)为0.975786,RMSE为0.002242,MAE为0.001612。将本模型与当前预测性能较好的其他基准模型进行预测效果的对比,本研究所提出的模型对长江水体总磷浓度预测拟合效果更好,精确度更高。在水资源保护和环境管理领域中使用光谱数据结合融合算法进行预测模型的研究和实践提供了新的思路和观点。 展开更多
关键词 光谱数据 改进粒子群优化算法 BP神经网络模型 核主成分分析(kpca) 总磷浓度
在线阅读 下载PDF
基于KPCA-LSSVM的硅锰合金熔炼过程炉渣碱度预测研究 被引量:19
15
作者 唐春霞 阳春华 +1 位作者 桂卫华 朱红求 《仪器仪表学报》 EI CAS CSCD 北大核心 2010年第3期689-693,共5页
针对硅锰合金熔炼过程中炉渣碱度在线检测困难、离线化验滞后大,难以实现实时控制的问题,提出了一种基于核主元分析(KPCA)与最小二乘支持向量机(LSSVM)相结合的预测方法。该方法通过KPCA去除样本数据的噪声,提取输入数据空间中的非线性... 针对硅锰合金熔炼过程中炉渣碱度在线检测困难、离线化验滞后大,难以实现实时控制的问题,提出了一种基于核主元分析(KPCA)与最小二乘支持向量机(LSSVM)相结合的预测方法。该方法通过KPCA去除样本数据的噪声,提取输入数据空间中的非线性主元,然后利用LSSVM回归算法建立硅锰合金熔炼炉炉渣碱度预测模型,工业生产过程数据仿真结果表明,与SVM或LSSVM建模方法相比,KPCA-LSSVM预测模型的测量精度高、跟踪性能好,能满足炉渣碱度的在线测量要求。 展开更多
关键词 炉渣碱度 硅锰合金 核主元分析 最小二乘支持向量机
在线阅读 下载PDF
基于优选样本的KPCA高光谱图像降维方法 被引量:14
16
作者 王瀛 郭雷 梁楠 《光子学报》 EI CAS CSCD 北大核心 2011年第6期847-851,共5页
降维是高光谱图像常用的预处理手段,而核主成份分析通过非线性映射能够挖掘数据的高阶统计特性,是目前较常使用的特征提取方法.本文提出了一种基于优选样本的核主成份分析高光谱图像降维方法,算法挑选参与核主成份分析运算的样本时兼顾... 降维是高光谱图像常用的预处理手段,而核主成份分析通过非线性映射能够挖掘数据的高阶统计特性,是目前较常使用的特征提取方法.本文提出了一种基于优选样本的核主成份分析高光谱图像降维方法,算法挑选参与核主成份分析运算的样本时兼顾整幅高光谱图像的统计特性,以与全图能量分布相近的最小样本集为最终选择样本.本算法由IDL7.0实现,并在实际高光谱图像Cuprite上进行实验.结果表明,在大幅缩短运算时间的同时,降维效果优于传统的核主成份分析方法. 展开更多
关键词 高光谱图像 核主成份分析 非线性映射 降维
在线阅读 下载PDF
基于改进KPCA算法的车牌字符识别方法 被引量:7
17
作者 吴成东 樊玉泉 +1 位作者 张云洲 刘濛 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第5期629-632,共4页
针对核主元分析(KPCA)用于提取车牌字符特征不足的情况,提出了一种采用多组均值矢量来代替原始图像矢量进行核矩阵计算的方法,该方法使得核矩阵维数大幅降低,同时有效地保留了字符图像信息.实验结果表明,该方法在不降低识别精度的基础... 针对核主元分析(KPCA)用于提取车牌字符特征不足的情况,提出了一种采用多组均值矢量来代替原始图像矢量进行核矩阵计算的方法,该方法使得核矩阵维数大幅降低,同时有效地保留了字符图像信息.实验结果表明,该方法在不降低识别精度的基础上对输入数据实现了有效的降维,大大缩短了计算时间,有效地满足了车牌实时识别系统技术要求.通过实验对比可知,该方法比目前常用的PCA及FLD算法具有更高的性能指标. 展开更多
关键词 核主元分析(kpca) 字符识别 图像 降维 车牌
在线阅读 下载PDF
基于PCA和KPCA特征抽取的SVM网络入侵检测方法 被引量:20
18
作者 高海华 杨辉华 王行愚 《华东理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第3期321-326,共6页
提出一种新颖的基于特征抽取的异常检测方法,应用主分量分析(PCA)和核主分量分析(KPCA)抽取入侵特征,再应用支持向量机(SVM)检测入侵。其中PCA对输入特征做线性变换,而KPCA通过核函数进行非线性变换。利用KDD 99数据集,将PCA-SVM、KPCA-... 提出一种新颖的基于特征抽取的异常检测方法,应用主分量分析(PCA)和核主分量分析(KPCA)抽取入侵特征,再应用支持向量机(SVM)检测入侵。其中PCA对输入特征做线性变换,而KPCA通过核函数进行非线性变换。利用KDD 99数据集,将PCA-SVM、KPCA-SVM与SVM、PCR、KPCR进行比较,结果显示:在不降低分类器性能的情况下,特征抽取方法能对输入数据有效降维。在各种方法中,KPCA与SVM的结合能得到最优入侵检测性能。 展开更多
关键词 异常检测 特征抽取 主分量分析(PCA) 核主分量分析(kpca) 支持向量机 (SVM)
在线阅读 下载PDF
基于局域波法和KPCA-LSSVM的滚动轴承故障诊断 被引量:14
19
作者 杨先勇 周晓军 +1 位作者 张文斌 杨富春 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2010年第8期1519-1524,共6页
针对故障滚动轴承振动信号具有非平稳性,提出基于局域波法和核主元分析-最小二乘支持向量机(KPCA-LSSVM)的故障诊断方法.先对轴承振动信号进行局域波分解得到若干内禀模式函数(IMF),分别计算各IMF分量的特征能量、奇异值和AR模型参数作... 针对故障滚动轴承振动信号具有非平稳性,提出基于局域波法和核主元分析-最小二乘支持向量机(KPCA-LSSVM)的故障诊断方法.先对轴承振动信号进行局域波分解得到若干内禀模式函数(IMF),分别计算各IMF分量的特征能量、奇异值和AR模型参数作为原始特征向量,再用KPCA将原始特征向量映射到高维特征空间提取主元构造新的特征向量,将其作为LSSVM分类器的输入来实现轴承的故障诊断.故障诊断试验结果表明,KPCA-LSSVM诊断方法通过KPCA得到更多的识别信息,改善了LSSVM的分类性能,相对于直接LSSVM诊断方法具有更优的泛化性,可准确识别轴承的故障类别和严重程度. 展开更多
关键词 滚动轴承 故障诊断 局域波法 核主元分析 最小二乘支持向量机
在线阅读 下载PDF
基于KPCA和BP神经网络的短期负荷预测 被引量:20
20
作者 刘畅 刘天琪 +3 位作者 陈振寰 何川 王福军 关铁英 《电测与仪表》 北大核心 2016年第10期57-61,共5页
为了提高电力系统短期负荷预测的精度,文中提出了一种基于核主成分分析(KPCA)和BP神经网络的负荷预测方法。影响负荷的因素作为神经网络的输入变量,太多输入变量会加大神经网络的训练负担,运用核主成分分析的方法对初始神经网络输入变... 为了提高电力系统短期负荷预测的精度,文中提出了一种基于核主成分分析(KPCA)和BP神经网络的负荷预测方法。影响负荷的因素作为神经网络的输入变量,太多输入变量会加大神经网络的训练负担,运用核主成分分析的方法对初始神经网络输入变量进行非线性降维,将降维后的数据作为神经网络新的输入变量,并对神经网络的训练算法进行改进,以加快收敛速度,最后在每一个时刻点上建立模型进行预测。采用文中提出的方法对甘肃某地区2014年的负荷进行预测,并与已有的BP神经网络方法和PCA-BP神经网络方法进行对比,结果表明该方法可提高负荷预测的精度。 展开更多
关键词 电力系统 负荷预测 核主成分分析 神经网络
在线阅读 下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部