期刊文献+
共找到99篇文章
< 1 2 5 >
每页显示 20 50 100
ALLIED FUZZY c-MEANS CLUSTERING MODEL 被引量:2
1
作者 武小红 周建江 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2006年第3期208-213,共6页
A novel model of fuzzy clustering, i.e. an allied fuzzy c means (AFCM) model is proposed based on the combination of advantages of fuzzy c means (FCM) and possibilistic c means (PCM) clustering. PCM is sensitive... A novel model of fuzzy clustering, i.e. an allied fuzzy c means (AFCM) model is proposed based on the combination of advantages of fuzzy c means (FCM) and possibilistic c means (PCM) clustering. PCM is sensitive to initializations and often generates coincident clusters. AFCM overcomes this shortcoming and it is an ex tension of PCM. Membership and typicality values can be simultaneously produced in AFCM. Experimental re- suits show that noise data can be well processed, coincident clusters are avoided and clustering accuracy is better. 展开更多
关键词 fuzzy c-means clustering possibilistic c means clustering allied fuzzy c-means clustering
在线阅读 下载PDF
Mercer Kernel Based Fuzzy Clustering Self-Adaptive Algorithm
2
作者 李侃 刘玉树 《Journal of Beijing Institute of Technology》 EI CAS 2004年第4期351-354,共4页
A novel mercer kernel based fuzzy clustering self-adaptive algorithm is presented. The mercer kernel method is introduced to the fuzzy c-means clustering. It may map implicitly the input data into the high-dimensional... A novel mercer kernel based fuzzy clustering self-adaptive algorithm is presented. The mercer kernel method is introduced to the fuzzy c-means clustering. It may map implicitly the input data into the high-dimensional feature space through the nonlinear transformation. Among other fuzzy c-means and its variants, the number of clusters is first determined. A self-adaptive algorithm is proposed. The number of clusters, which is not given in advance, can be gotten automatically by a validity measure function. Finally, experiments are given to show better performance with the method of kernel based fuzzy c-means self-adaptive algorithm. 展开更多
关键词 fuzzy c-means mercer kernel feature space validity measure function
在线阅读 下载PDF
NEW SHADOWED C-MEANS CLUSTERING WITH FEATURE WEIGHTS 被引量:2
3
作者 王丽娜 王建东 姜坚 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2012年第3期273-283,共11页
Partition-based clustering with weighted feature is developed in the framework of shadowed sets. The objects in the core and boundary regions, generated by shadowed sets-based clustering, have different impact on the ... Partition-based clustering with weighted feature is developed in the framework of shadowed sets. The objects in the core and boundary regions, generated by shadowed sets-based clustering, have different impact on the prototype of each cluster. By integrating feature weights, a formula for weight calculation is introduced to the clustering algorithm. The selection of weight exponent is crucial for good result and the weights are updated iteratively with each partition of clusters. The convergence of the weighted algorithms is given, and the feasible cluster validity indices of data mining application are utilized. Experimental results on both synthetic and real-life numerical data with different feature weights demonstrate that the weighted algorithm is better than the other unweighted algorithms. 展开更多
关键词 fuzzy c-means shadowed sets shadowed c-means feature weights cluster validity index
在线阅读 下载PDF
A fast and effective fuzzy clustering algorithm for color image segmentation 被引量:4
4
作者 王改华 李德华 《Journal of Beijing Institute of Technology》 EI CAS 2012年第4期518-525,共8页
A fast and effective fuzzy clustering algorithm is proposed. The algorithm splits an image into n × n blocks, and uses block variance to judge whether the block region is homogeneous. Mean and center pixel of eac... A fast and effective fuzzy clustering algorithm is proposed. The algorithm splits an image into n × n blocks, and uses block variance to judge whether the block region is homogeneous. Mean and center pixel of each homogeneous block are extracted for feature. Each inhomogeneous block is split into separate pixels and the mean of neighboring pixels within a window around each pixel and pixel value are extracted for feature. Then cluster of homogeneous blocks and cluster of separate pixels from inhomogeneous blocks are carried out respectively according to different membership functions. In fuzzy clustering stage, the center pixel and center number of the initial clustering are calculated based on histogram by using mean feature. Then different membership functions according to comparative result of block variance are computed. Finally, modified fuzzy c-means with spatial information to complete image segmentation axe used. Experimental results show that the proposed method can achieve better segmental results and has shorter executive time than many well-known methods. 展开更多
关键词 cluster image segmentation fuzzy c-means HISTOGRAM
在线阅读 下载PDF
Kernel Generalized Noise Clustering Algorithm
5
作者 武小红 周建江 《Journal of Southwest Jiaotong University(English Edition)》 2007年第2期96-101,共6页
To deal with the nonlinear separable problem, the generalized noise clustering (GNC) algorithm is extended to a kernel generalized noise clustering (KGNC) model. Different from the fuzzy c-means (FCM) model and ... To deal with the nonlinear separable problem, the generalized noise clustering (GNC) algorithm is extended to a kernel generalized noise clustering (KGNC) model. Different from the fuzzy c-means (FCM) model and the GNC model which are based on Euclidean distance, the presented model is based on kernel-induced distance by using kernel method. By kernel method the input data are nonlinearly and implicitly mapped into a high-dimensional feature space, where the nonlinear pattern appears linear and the GNC algorithm is performed. It is unnecessary to calculate in high-dimensional feature space because the kernel function can do it just in input space. The effectiveness of the proposed algorithm is verified by experiments on three data sets. It is concluded that the KGNC algorithm has better clustering accuracy than FCM and GNC in clustering data sets containing noisy data. 展开更多
关键词 fuzzy clustering Pattern recognition kernel methods Noise clustering kernel generalized noise clustering
在线阅读 下载PDF
Research on Wind Power Prediction Modeling Based on Adaptive Feature Entropy Fuzzy Clustering
6
作者 HUANG Haixin KONG Chang 《沈阳理工大学学报》 CAS 2014年第4期75-80,共6页
Wind farm power prediction is proposed based on adaptive feature weight entropy fuzzy clustering algorithm.According to the fuzzy clustering method,a large number of historical data of a wind farm in Inner Mongolia ar... Wind farm power prediction is proposed based on adaptive feature weight entropy fuzzy clustering algorithm.According to the fuzzy clustering method,a large number of historical data of a wind farm in Inner Mongolia are analyzed and classified.Model of adaptive entropy weight for clustering is built.Wind power prediction model based on adaptive entropy fuzzy clustering feature weights is built.Simulation results show that the proposed method could distinguish the abnormal data and forecast more accurately and compute fastly. 展开更多
关键词 fuzzy c-means clustering adaptive feature weighted ENTROPY wind power prediction
在线阅读 下载PDF
Soil pore identification with the adaptive fuzzy C-means method based on computed tomography images 被引量:5
7
作者 Yue Zhao Qiaoling Han +1 位作者 Yandong Zhao Jinhao Liu 《Journal of Forestry Research》 SCIE CAS CSCD 2019年第3期1043-1052,共10页
The complex geometry and topology of soil is widely recognised as the key driver in many ecological processes. X-ray computed tomography (CT) provides insight into the internal structure of soil pores automatically an... The complex geometry and topology of soil is widely recognised as the key driver in many ecological processes. X-ray computed tomography (CT) provides insight into the internal structure of soil pores automatically and accurately. Until recently, there have not been methods to identify soil pore structures. This has restricted the development of soil science, particularly regarding pore geometry and spatial distribution. Through the adoption of the fuzzy clustering theory and the establishment of pore identification rules, a novel pore identification method is described to extract pore structures from CT soil images. The robustness of the adaptive fuzzy C-means method (AFCM), the adaptive threshold method, and Image-Pro Plus tools were compared on soil specimens under different conditions, such as frozen, saturated, and dry situations. The results demonstrate that the AFCM method is suitable for identifying pore clusters, especially tiny pores, under various soil conditions. The method would provide an optional technique for the study of soil micromorphology. 展开更多
关键词 CT soil IMAGES fuzzy c-meanS fuzzy clustering theory PORE IDENTIFICATION rule
在线阅读 下载PDF
Substation clustering based on improved KFCM algorithm with adaptive optimal clustering number selection 被引量:1
8
作者 Yanhui Xu Yihao Gao +4 位作者 Yundan Cheng Yuhang Sun Xuesong Li Xianxian Pan Hao Yu 《Global Energy Interconnection》 EI CSCD 2023年第4期505-516,共12页
The premise and basis of load modeling are substation load composition inquiries and cluster analyses.However,the traditional kernel fuzzy C-means(KFCM)algorithm is limited by artificial clustering number selection an... The premise and basis of load modeling are substation load composition inquiries and cluster analyses.However,the traditional kernel fuzzy C-means(KFCM)algorithm is limited by artificial clustering number selection and its convergence to local optimal solutions.To overcome these limitations,an improved KFCM algorithm with adaptive optimal clustering number selection is proposed in this paper.This algorithm optimizes the KFCM algorithm by combining the powerful global search ability of genetic algorithm and the robust local search ability of simulated annealing algorithm.The improved KFCM algorithm adaptively determines the ideal number of clusters using the clustering evaluation index ratio.Compared with the traditional KFCM algorithm,the enhanced KFCM algorithm has robust clustering and comprehensive abilities,enabling the efficient convergence to the global optimal solution. 展开更多
关键词 Load substation clustering Simulated annealing genetic algorithm kernel fuzzy c-means algorithm clustering evaluation
在线阅读 下载PDF
Comparison of Clustering Methods in Yeast Saccharomyces Cerevisiae
9
作者 Wen Wang Ni-Ni Rao Xi Chen Shang-Lei Xu 《Journal of Electronic Science and Technology》 CAS 2010年第2期178-182,共5页
In recent years, microarray technology has been widely applied in biological and clinical studies for simultaneous monitoring of gene expression in thousands of genes. Gene clustering analysis is found useful for disc... In recent years, microarray technology has been widely applied in biological and clinical studies for simultaneous monitoring of gene expression in thousands of genes. Gene clustering analysis is found useful for discovering groups of correlated genes potentially co-regulated or associated to the disease or conditions under investigation. Many clustering methods including k-means, fuzzy c-means, and hierarchical clustering have been widely used in literatures. Yet no comprehensive comparative study has been performed to evaluate the effectiveness of these methods, specially, in yeast saccharomyces cerevisiae. In this paper, these three gene clustering methods are compared. Classification accuracy and CPU time cost are employed for measuring performance of these algorithms. Our results show that hierarchical clustering outperforms k-means and fuzzy c-means clustering. The analysis provides deep insight to the complicated gene clustering problem of expression profile and serves as a practical guideline for routine microarray cluster analysis of gene expression. 展开更多
关键词 fuzzy c-means hierarchical clustering K-MEANS yeast saecharomyees cerevisiae.
在线阅读 下载PDF
改进黑猩猩优化算法的RGB-D图像核模糊聚类分割 被引量:1
10
作者 刘恒 范九伦 郭培岩 《微电子学与计算机》 2024年第9期10-21,共12页
借助于低成本深度传感器,产生了深度与颜色同步的RGB-D图像。针对RGB-D图像分割困难以及黑猩猩优化算法精度低、收敛速度慢和易陷入局部最优的问题,提出了基于改进黑猩猩优化算法(Improved Chimp Optimization Algorithm,IChOA)的RGB-D... 借助于低成本深度传感器,产生了深度与颜色同步的RGB-D图像。针对RGB-D图像分割困难以及黑猩猩优化算法精度低、收敛速度慢和易陷入局部最优的问题,提出了基于改进黑猩猩优化算法(Improved Chimp Optimization Algorithm,IChOA)的RGB-D图像核模糊聚类算法。首先,对RGB-D图像进行特征提取生成6个特征子集;其次,引入Levy飞行策略和非线性惯性权重对ChOA进行改造;最后,利用IChOA对6个特征子集进行核模糊聚类,得到多个最优聚类,然后通过聚集超像素方法对多个最优聚类进行不同组合的分割,生成最终的分割结果。采用NYU depth V2室内图像数据集进行实验,与现有的一些分割方法(阈值分割,模糊子空间聚类,残差驱动的模糊C-均值,硬C-均值,模糊C-均值,核模糊聚类,基于混沌kbest引力搜索算法和随机亨利溶解度优化算法)进行比较,结果表明所提出的RGB-D分割算法优于比较的算法。 展开更多
关键词 RGB-D图像分割 核模糊聚类 黑猩猩优化算法 聚集超像素
在线阅读 下载PDF
基于粒子群优化的直觉模糊核聚类算法研究 被引量:55
11
作者 余晓东 雷英杰 +1 位作者 岳韶华 王睿 《通信学报》 EI CSCD 北大核心 2015年第5期74-80,共7页
针对现有基于核方法的直觉模糊聚类算法对初始值敏感、收敛速度慢等缺陷,利用粒子群优化算法全局搜索能力强、收敛速度快的优势,对直觉模糊核聚类算法的初始聚类中心进行优化,并提出了一种基于粒子群优化的直觉模糊核聚类算法。该算法... 针对现有基于核方法的直觉模糊聚类算法对初始值敏感、收敛速度慢等缺陷,利用粒子群优化算法全局搜索能力强、收敛速度快的优势,对直觉模糊核聚类算法的初始聚类中心进行优化,并提出了一种基于粒子群优化的直觉模糊核聚类算法。该算法在提升聚类性能的同时,有效增强了算法的收敛速度。在实验阶段,采用4组标准数据集对该算法进行了分类实验及有效性测试,并将其与模糊c均值聚类算法及直觉模糊c均值聚类算法的分类效果及运行时间进行对比,实验结果充分表明了该算法的有效性及优越性。 展开更多
关键词 直觉模糊集 核方法 模糊聚类 粒子群优化
在线阅读 下载PDF
基于核距离的直觉模糊c均值聚类算法 被引量:9
12
作者 余晓东 雷英杰 +2 位作者 宋亚飞 岳韶华 申晓勇 《电子学报》 EI CAS CSCD 北大核心 2016年第10期2530-2534,共5页
针对现有直觉模糊c均值聚类算法无法发现非凸聚类结构的缺陷,提出了一种基于核化距离的直觉模糊c均值聚类算法.算法在定义了基于核的直觉模糊欧式距离基础上,通过把聚类样本映射到高维特征空间,使原来没有显现的特征突现出来,从而能够... 针对现有直觉模糊c均值聚类算法无法发现非凸聚类结构的缺陷,提出了一种基于核化距离的直觉模糊c均值聚类算法.算法在定义了基于核的直觉模糊欧式距离基础上,通过把聚类样本映射到高维特征空间,使原来没有显现的特征突现出来,从而能够更好地聚类.实验选择一组人工数据集及一组UCI数据集测试了本文算法,并将其与五种经典的聚类算法进行了比较.实验结果充分表明了该算法的有效性及优越性. 展开更多
关键词 直觉模糊集 直觉模糊聚类 核方法 无监督学习
在线阅读 下载PDF
基于小波融合和PCA-核模糊聚类的遥感图像变化检测 被引量:28
13
作者 慕彩红 霍利利 +2 位作者 刘逸 刘若辰 焦李成 《电子学报》 EI CAS CSCD 北大核心 2015年第7期1375-1381,共7页
本文提出了一种变化检测方法以提高算法的鲁棒性、检测精度以及抗噪性.首先对差值法构造的差异图和比值法构造的差异图进行小波融合.然后将融合图像分成互不重叠的小块,并用主成分分析得到图像块的正交基.通过将融合图像中每个像素的邻... 本文提出了一种变化检测方法以提高算法的鲁棒性、检测精度以及抗噪性.首先对差值法构造的差异图和比值法构造的差异图进行小波融合.然后将融合图像分成互不重叠的小块,并用主成分分析得到图像块的正交基.通过将融合图像中每个像素的邻域小块映射到正交基上使得每个像素用一个特征向量来表示.最后用基于核的模糊C均值对特征向量进行聚类.实验结果显示与使用单一类型差异图的聚类方法相比,本方法由于采用了图像融合的策略而增强了鲁棒性,且由于采用了核模糊聚类,进一步提高了变化检测精度.此外由于使用了特征提取的技术,本方法具有一定的抗噪性能. 展开更多
关键词 遥感图像 变化检测 特征提取 核模糊聚类 小波融合
在线阅读 下载PDF
基于核方法的模糊聚类算法 被引量:75
14
作者 伍忠东 高新波 谢维信 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2004年第4期533-537,共5页
将核方法的思想推广到模糊C 均值算法,构造了基于核函数的模糊核C 均值算法,使其能够聚类非超球体数据、被噪声污染数据、多种模式原型混合数据、不对称数据等多种数据结构,并指出一阶多项式模糊核C 均值算法等价于模糊C 均值算法.人工... 将核方法的思想推广到模糊C 均值算法,构造了基于核函数的模糊核C 均值算法,使其能够聚类非超球体数据、被噪声污染数据、多种模式原型混合数据、不对称数据等多种数据结构,并指出一阶多项式模糊核C 均值算法等价于模糊C 均值算法.人工和实际数据的实验结果表明,与模糊C 均值算法相比,模糊核C 均值算法在多种数据结构条件下可以有效地进行聚类. 展开更多
关键词 聚类分析 模糊C-均值 核方法 无监督学习
在线阅读 下载PDF
基于样本优化选取的光谱重建方法研究 被引量:10
15
作者 龙艳群 王慧琴 +2 位作者 王可 王展 赵素文 《影像科学与光化学》 CAS CSCD 北大核心 2017年第1期88-96,共9页
针对光谱反射率重建中已有样本选取方法的不足,提出了一种基于核模糊C聚类的样本优化选取方法。该方法综合考虑了光谱反射率空间的广泛性和色度空间的相似性,较大程度满足了光谱重建的精度。首先采用已有样本选取法在光谱反射率空间选取... 针对光谱反射率重建中已有样本选取方法的不足,提出了一种基于核模糊C聚类的样本优化选取方法。该方法综合考虑了光谱反射率空间的广泛性和色度空间的相似性,较大程度满足了光谱重建的精度。首先采用已有样本选取法在光谱反射率空间选取C个样本作为聚类初始点,再将原光谱转化到色度空间进行聚类,同时引入核函数将二维色度空间映射到三维特征空间,使得特征数据线性可分,从而达到更好的划分效果。实验结果表明,使用该方法选取训练样本进行光谱反射率重建能够进一步提高光谱重建精度,色度评价和光谱评价结果均好于已有方法。 展开更多
关键词 光谱学 核模糊C聚类 样本选取 光谱重建
在线阅读 下载PDF
基于灰度-梯度共生矩阵和模糊核聚类的振动图形识别方法 被引量:12
16
作者 丛蕊 高光甫 +2 位作者 樊瑞筱 乔磊 张威 《振动与冲击》 EI CSCD 北大核心 2012年第21期73-76,88,共5页
以往复机械振动参数图形为对象,提出了基于灰度-梯度共生矩阵和模糊核聚类的振动图形识别方法。利用灰度-梯度共生矩阵直接提取振动参数图形中的特征信息,将得到的纹理特征参量作为样本输入空间,通过Mercer核把输入样本映射到高斯特征... 以往复机械振动参数图形为对象,提出了基于灰度-梯度共生矩阵和模糊核聚类的振动图形识别方法。利用灰度-梯度共生矩阵直接提取振动参数图形中的特征信息,将得到的纹理特征参量作为样本输入空间,通过Mercer核把输入样本映射到高斯特征空间后,在高维特征空间中进行聚类,从而实现往复机械故障智能诊断。实验结果表明,该方法可以获得较高的诊断精度,具有一定的可行性和有效性。 展开更多
关键词 灰度-梯度共生矩阵 核函数 模糊聚类 故障诊断
在线阅读 下载PDF
基于粒子群优化模糊核聚类的电梯群交通模式识别 被引量:10
17
作者 于德亮 唐海燕 +2 位作者 丁宝 张永明 齐维贵 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2012年第10期84-88,共5页
为了改善电梯群控系统的性能,使电梯群节能并高效运行,针对不同的交通模式采用合理的调度算法对电梯群进行优化调度,提出一种基于粒子群(PSO)的模糊核聚类算法(KFCM)的电梯交通流模式识别方法.利用基于梯度下降的粒子群优化算法代替KFC... 为了改善电梯群控系统的性能,使电梯群节能并高效运行,针对不同的交通模式采用合理的调度算法对电梯群进行优化调度,提出一种基于粒子群(PSO)的模糊核聚类算法(KFCM)的电梯交通流模式识别方法.利用基于梯度下降的粒子群优化算法代替KFCM算法的迭代过程,可使算法具有较强的全局搜索能力和局部搜索能力,并降低了KFCM算法对初始值的敏感度.利用核方法将低维特征空间的样本映射到高维特征空间,增加对样本特征的优化,并使样本特征在高维特征空间线性可分,更加容易聚类.采用在某办公楼采集的电梯交通流数据作为测试样本,仿真结果表明,与FCM聚类算法相比,该算法具有良好的性能指标,对电梯交通流的聚类效果更准确。 展开更多
关键词 节能控制 交通模式 电梯群 粒子群 模糊核 聚类
在线阅读 下载PDF
基于样本密度KFCM新算法及其在故障诊断的应用 被引量:14
18
作者 陶新民 徐晶 +1 位作者 付强 刘兴丽 《振动与冲击》 EI CSCD 北大核心 2009年第8期61-64,83,共5页
针对传统核模糊聚类(KFCM)算法无法克服边界噪声数据影响且对初始聚类中心敏感的不足,提出一种基于样本密度和最大类间方差法相结合的KFCM算法。该算法在传统的KFCM算法中引入样本分布密度作为权重,克服噪声及边界数据对分类中心的影响... 针对传统核模糊聚类(KFCM)算法无法克服边界噪声数据影响且对初始聚类中心敏感的不足,提出一种基于样本密度和最大类间方差法相结合的KFCM算法。该算法在传统的KFCM算法中引入样本分布密度作为权重,克服噪声及边界数据对分类中心的影响,使样本的聚类效果更好,同时还可以分析各样本对聚类的贡献程度。此外利用最大类间方差法对样本密度进行分割,得到各类中心点并以此作为KFCM算法的初始聚类中心,克服了传统算法对初始值敏感的不足。对各种实际数据集的测试结果均显示出新算法的优良性能。最后利用新算法对轴承故障进行诊断,试验结果表明新算法的诊断率优于传统的聚类算法。 展开更多
关键词 核模糊聚类 样本密度 最大类间方差法 故障诊断
在线阅读 下载PDF
基于直觉模糊c均值聚类核匹配追踪的弹道中段目标识别方法 被引量:11
19
作者 雷阳 孔韦韦 雷英杰 《通信学报》 EI CSCD 北大核心 2012年第11期136-143,共8页
针对核匹配追踪算法(KMP,kernel matching pursuit)进行全局最优搜索导致学习时间过长这一缺陷,汲取直觉模糊c均值聚类(IFCM,intuitionistic fuzzy c-means)算法的动态聚类特性优势,提出一种基于直觉模糊c均值聚类的核匹配追踪(IFCM-KMP... 针对核匹配追踪算法(KMP,kernel matching pursuit)进行全局最优搜索导致学习时间过长这一缺陷,汲取直觉模糊c均值聚类(IFCM,intuitionistic fuzzy c-means)算法的动态聚类特性优势,提出一种基于直觉模糊c均值聚类的核匹配追踪(IFCM-KMP,intuitionistic fuzzy c-means kernel matching pursuit)算法,且对UCI库中4组实际样本数据进行了分类实验及有效性测试。最后,选取高分辨距离像(HRRP)这一弹道中段目标识别常用的特征属性,对其进行特征提取获得子像,并分别采用FCM,KMP,IFCM-KMP 3种算法对真弹头进行目标识别仿真实验及结果对比分析,充分表明了IFCM-KMP算法用于弹道中段目标识别较之FCM、KMP的优越性及有效性。 展开更多
关键词 直觉模糊集 C均值聚类 模糊C均值聚类 核匹配追踪 高分辨距离像 目标识别
在线阅读 下载PDF
基于粒子群优化的模糊核聚类方法 被引量:12
20
作者 杨广全 朱昌明 《上海交通大学学报》 EI CAS CSCD 北大核心 2009年第6期935-939,共5页
针对模糊核聚类对初始值敏感、易陷入局部最优的缺点,提出了基于粒子群优化的模糊核聚类方法.该方法根据聚类准则设计适应度函数,利用粒子群优化算法对聚类中心进行优化,在迭代优化过程中设计了梯度下降法加快算法的收敛速度,并引入变... 针对模糊核聚类对初始值敏感、易陷入局部最优的缺点,提出了基于粒子群优化的模糊核聚类方法.该方法根据聚类准则设计适应度函数,利用粒子群优化算法对聚类中心进行优化,在迭代优化过程中设计了梯度下降法加快算法的收敛速度,并引入变异机制增强粒子群的多样性.仿真实验及在水轮机转轮叶片裂纹源定位中的应用验证了算法的可行性和有效性. 展开更多
关键词 聚类分析 模糊核聚类 粒子群优化算法 梯度下降法
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部