期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Cobalt crust recognition based on kernel Fisher discriminant analysis and genetic algorithm in reverberation environment 被引量:2
1
作者 ZHAO Hai-ming ZHAO Xiang +1 位作者 HAN Feng-lin WANG Yan-li 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第1期179-193,共15页
Recognition of substrates in cobalt crust mining areas can improve mining efficiency.Aiming at the problem of unsatisfactory performance of using single feature to recognize the seabed material of the cobalt crust min... Recognition of substrates in cobalt crust mining areas can improve mining efficiency.Aiming at the problem of unsatisfactory performance of using single feature to recognize the seabed material of the cobalt crust mining area,a method based on multiple-feature sets is proposed.Features of the target echoes are extracted by linear prediction method and wavelet analysis methods,and the linear prediction coefficient and linear prediction cepstrum coefficient are also extracted.Meanwhile,the characteristic matrices of modulus maxima,sub-band energy and multi-resolution singular spectrum entropy are obtained,respectively.The resulting features are subsequently compressed by kernel Fisher discriminant analysis(KFDA),the output features are selected using genetic algorithm(GA)to obtain optimal feature subsets,and recognition results of classifier are chosen as genetic fitness function.The advantages of this method are that it can describe the signal features more comprehensively and select the favorable features and remove the redundant features to the greatest extent.The experimental results show the better performance of the proposed method in comparison with only using KFDA or GA. 展开更多
关键词 feature extraction kernel Fisher discriminant analysis(KFDA) genetic algorithm multiple feature sets cobalt crust recognition
在线阅读 下载PDF
Theoretical convergence analysis of complex Gaussian kernel LMS algorithm
2
作者 Wei Gao Jianguo Huang +1 位作者 Jing Han Qunfei Zhang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第1期39-50,共12页
With the vigorous expansion of nonlinear adaptive filtering with real-valued kernel functions,its counterpart complex kernel adaptive filtering algorithms were also sequentially proposed to solve the complex-valued no... With the vigorous expansion of nonlinear adaptive filtering with real-valued kernel functions,its counterpart complex kernel adaptive filtering algorithms were also sequentially proposed to solve the complex-valued nonlinear problems arising in almost all real-world applications.This paper firstly presents two schemes of the complex Gaussian kernel-based adaptive filtering algorithms to illustrate their respective characteristics.Then the theoretical convergence behavior of the complex Gaussian kernel least mean square(LMS) algorithm is studied by using the fixed dictionary strategy.The simulation results demonstrate that the theoretical curves predicted by the derived analytical models consistently coincide with the Monte Carlo simulation results in both transient and steady-state stages for two introduced complex Gaussian kernel LMS algonthms using non-circular complex data.The analytical models are able to be regard as a theoretical tool evaluating ability and allow to compare with mean square error(MSE) performance among of complex kernel LMS(KLMS) methods according to the specified kernel bandwidth and the length of dictionary. 展开更多
关键词 nonlinear adaptive filtering complex Gaussian kernel convergence analysis non-circular data kernel least mean square(KLMS).
在线阅读 下载PDF
基于固定窗漂移检测的MSWI过程CO排放建模
3
作者 汤健 张润雨 +1 位作者 夏恒 乔俊飞 《北京工业大学学报》 北大核心 2025年第8期930-943,共14页
针对城市固废焚烧(municipal solid waste incineration, MSWI)过程中能够表征燃烧过程是否稳定的关键工业参数--一氧化碳(carbon monoxide, CO)排放浓度的动态时变特性,提出基于固定窗漂移检测的MSWI过程CO排放建模方法。首先,基于历... 针对城市固废焚烧(municipal solid waste incineration, MSWI)过程中能够表征燃烧过程是否稳定的关键工业参数--一氧化碳(carbon monoxide, CO)排放浓度的动态时变特性,提出基于固定窗漂移检测的MSWI过程CO排放建模方法。首先,基于历史数据集采用k-means算法获取典型样本池(typical sample pool, TSP),构建基于长短期记忆(long short-term memory, LSTM)神经网络的离线预测模型和基于核主成分分析(kernel principal component analysis, KPCA)的漂移指标计算模型。然后,针对每个在线采集样本,在预设定固定窗口未填满时基于历史LSTM神经网络模型进行在线预测,在预设定固定窗口填满时采用历史KPCA模型进行漂移检测。最后,利用指标霍特林统计量T2和平方预测误差(squared prediction error, SPE)判断是否产生漂移。若未产生漂移,则返回至新窗口期;若产生漂移,则合并历史数据和漂移数据以更新TSP、LSTM模型和KPCA模型。工业现场实际数据的仿真验证了所提方法的合理性和有效性。 展开更多
关键词 城市固废焚烧(municipal solid waste incineration MSWI) 一氧化碳(carbon monoxide CO)排放 概念漂移检测 典型样本池(typical sample pool TSP) 长短期记忆(long short-term memory LSTM)神经网络 核主成分分析(kernel principal component analysis KPCA)
在线阅读 下载PDF
Modeling and monitoring of nonlinear multi-mode processes based on similarity measure-KPCA 被引量:10
4
作者 WANG Xiao-gang HUANG Li-wei ZHANG Ying-wei 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第3期665-674,共10页
A new modeling and monitoring approach for multi-mode processes is proposed.The method of similarity measure(SM) and kernel principal component analysis(KPCA) are integrated to construct SM-KPCA monitoring scheme,wher... A new modeling and monitoring approach for multi-mode processes is proposed.The method of similarity measure(SM) and kernel principal component analysis(KPCA) are integrated to construct SM-KPCA monitoring scheme,where SM method serves as the separation of common subspace and specific subspace.Compared with the traditional methods,the main contributions of this work are:1) SM consisted of two measures of distance and angle to accommodate process characters.The different monitoring effect involves putting on the different weight,which would simplify the monitoring model structure and enhance its reliability and robustness.2) The proposed method can be used to find faults by the common space and judge which mode the fault belongs to by the specific subspace.Results of algorithm analysis and fault detection experiments indicate the validity and practicability of the presented method. 展开更多
关键词 process monitoring kernel principal component analysis (KPCA) similarity measure subspace separation
在线阅读 下载PDF
Adaptive WNN aerodynamic modeling based on subset KPCA feature extraction 被引量:5
5
作者 孟月波 邹建华 +1 位作者 甘旭升 刘光辉 《Journal of Central South University》 SCIE EI CAS 2013年第4期931-941,共11页
In order to accurately describe the dynamic characteristics of flight vehicles through aerodynamic modeling, an adaptive wavelet neural network (AWNN) aerodynamic modeling method is proposed, based on subset kernel pr... In order to accurately describe the dynamic characteristics of flight vehicles through aerodynamic modeling, an adaptive wavelet neural network (AWNN) aerodynamic modeling method is proposed, based on subset kernel principal components analysis (SKPCA) feature extraction. Firstly, by fuzzy C-means clustering, some samples are selected from the training sample set to constitute a sample subset. Then, the obtained samples subset is used to execute SKPCA for extracting basic features of the training samples. Finally, using the extracted basic features, the AWNN aerodynamic model is established. The experimental results show that, in 50 times repetitive modeling, the modeling ability of the method proposed is better than that of other six methods. It only needs about half the modeling time of KPCA-AWNN under a close prediction accuracy, and can easily determine the model parameters. This enables it to be effective and feasible to construct the aerodynamic modeling for flight vehicles. 展开更多
关键词 WAVELET neural network fuzzy C-means clustering kernel principal components analysis feature extraction aerodynamic modeling
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部