期刊文献+
共找到131,200篇文章
< 1 2 250 >
每页显示 20 50 100
一种基于粗糙熵的改进K-modes聚类算法
1
作者 刘财辉 曾雄 谢德华 《南京理工大学学报》 CAS CSCD 北大核心 2024年第3期335-341,共7页
K-modes聚类算法被广泛应用于人工智能、数据挖掘等领域。传统的K-modes聚类算法有不错的聚类效果,但是存在迭代次数多、计算量大、容易受到冗余属性的干扰等问题,且仅采用简单的0-1匹配的方法来定义2个样本属性值之间的距离,没有充分... K-modes聚类算法被广泛应用于人工智能、数据挖掘等领域。传统的K-modes聚类算法有不错的聚类效果,但是存在迭代次数多、计算量大、容易受到冗余属性的干扰等问题,且仅采用简单的0-1匹配的方法来定义2个样本属性值之间的距离,没有充分考虑每个属性对聚类结果的影响。针对上述问题,该文将粗糙熵引入K-modes算法。首先利用粗糙集属性约简算法消除冗余属性,确定各属性的重要程度;然后利用粗糙熵确定每个属性的权重,从而定义新的类内距离。将该文所提算法与传统的K-modes聚类算法分别在4组公开数据集上进行对比试验。试验结果表明,该文所提算法聚类准确率比传统的K-modes聚类算法更高。 展开更多
关键词 聚类 k-modes算法 粗糙集 粗糙熵 属性约简 权重
在线阅读 下载PDF
K-Modes聚类数据收集和发布过程中的混洗差分隐私保护方法 被引量:5
2
作者 蒋伟进 陈艺琳 +3 位作者 韩裕清 吴玉庭 周为 王海娟 《通信学报》 EI CSCD 北大核心 2024年第1期201-213,共13页
针对目前聚类数据收集与发布安全性不足的问题,为保护聚类数据中的用户隐私并提高数据质量,基于混洗差分隐私模型,提出一种去可信第三方的K-Modes聚类数据收集和发布的隐私保护方法。首先,使用K-Modes聚类数据收集算法对用户数据进行采... 针对目前聚类数据收集与发布安全性不足的问题,为保护聚类数据中的用户隐私并提高数据质量,基于混洗差分隐私模型,提出一种去可信第三方的K-Modes聚类数据收集和发布的隐私保护方法。首先,使用K-Modes聚类数据收集算法对用户数据进行采样并加噪,再通过填补取值域随机排列发布算法打乱采样数据的初始顺序,使恶意攻击者不能根据用户与数据之间的关系识别出目标用户。然后,尽可能减小噪声的干扰,利用循环迭代的方式计算出新的质心完成聚类。最后,从理论层面上分析了以上3种方法的隐私性、可行性和复杂度,并利用3个真实数据集和近年来具有权威性的同类算法KM、DPLM、LDPKM等进行准确率、熵值的对比,验证所提方法的有效性。实验结果表明,所提方法的隐私保护和发布数据质量均优于当前同类算法。 展开更多
关键词 混洗差分隐私 k-modes聚类 隐私保护 数据收集 数据发布
在线阅读 下载PDF
Research on Euclidean Algorithm and Reection on Its Teaching
3
作者 ZHANG Shaohua 《应用数学》 北大核心 2025年第1期308-310,共3页
In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and t... In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and the greatest common divisor.We further provided several suggestions for teaching. 展开更多
关键词 Euclid's algorithm Division algorithm Bezout's equation
在线阅读 下载PDF
An Algorithm for Cloud-based Web Service Combination Optimization Through Plant Growth Simulation
4
作者 Li Qiang Qin Huawei +1 位作者 Qiao Bingqin Wu Ruifang 《系统仿真学报》 北大核心 2025年第2期462-473,共12页
In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-base... In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-based web services and the constraints of system resources.Then,a light-induced plant growth simulation algorithm was established.The performance of the algorithm was compared through several plant types,and the best plant model was selected as the setting for the system.Experimental results show that when the number of test cloud-based web services reaches 2048,the model being 2.14 times faster than PSO,2.8 times faster than the ant colony algorithm,2.9 times faster than the bee colony algorithm,and a remarkable 8.38 times faster than the genetic algorithm. 展开更多
关键词 cloud-based service scheduling algorithm resource constraint load optimization cloud computing plant growth simulation algorithm
在线阅读 下载PDF
Multi-QoS routing algorithm based on reinforcement learning for LEO satellite networks 被引量:1
5
作者 ZHANG Yifan DONG Tao +1 位作者 LIU Zhihui JIN Shichao 《Journal of Systems Engineering and Electronics》 2025年第1期37-47,共11页
Low Earth orbit(LEO)satellite networks exhibit distinct characteristics,e.g.,limited resources of individual satellite nodes and dynamic network topology,which have brought many challenges for routing algorithms.To sa... Low Earth orbit(LEO)satellite networks exhibit distinct characteristics,e.g.,limited resources of individual satellite nodes and dynamic network topology,which have brought many challenges for routing algorithms.To satisfy quality of service(QoS)requirements of various users,it is critical to research efficient routing strategies to fully utilize satellite resources.This paper proposes a multi-QoS information optimized routing algorithm based on reinforcement learning for LEO satellite networks,which guarantees high level assurance demand services to be prioritized under limited satellite resources while considering the load balancing performance of the satellite networks for low level assurance demand services to ensure the full and effective utilization of satellite resources.An auxiliary path search algorithm is proposed to accelerate the convergence of satellite routing algorithm.Simulation results show that the generated routing strategy can timely process and fully meet the QoS demands of high assurance services while effectively improving the load balancing performance of the link. 展开更多
关键词 low Earth orbit(LEO)satellite network reinforcement learning multi-quality of service(QoS) routing algorithm
在线阅读 下载PDF
Research on three-dimensional attack area based on improved backtracking and ALPS-GP algorithms of air-to-air missile
6
作者 ZHANG Haodi WANG Yuhui HE Jiale 《Journal of Systems Engineering and Electronics》 2025年第1期292-310,共19页
In the field of calculating the attack area of air-to-air missiles in modern air combat scenarios,the limitations of existing research,including real-time calculation,accuracy efficiency trade-off,and the absence of t... In the field of calculating the attack area of air-to-air missiles in modern air combat scenarios,the limitations of existing research,including real-time calculation,accuracy efficiency trade-off,and the absence of the three-dimensional attack area model,restrict their practical applications.To address these issues,an improved backtracking algorithm is proposed to improve calculation efficiency.A significant reduction in solution time and maintenance of accuracy in the three-dimensional attack area are achieved by using the proposed algorithm.Furthermore,the age-layered population structure genetic programming(ALPS-GP)algorithm is introduced to determine an analytical polynomial model of the three-dimensional attack area,considering real-time requirements.The accuracy of the polynomial model is enhanced through the coefficient correction using an improved gradient descent algorithm.The study reveals a remarkable combination of high accuracy and efficient real-time computation,with a mean error of 91.89 m using the analytical polynomial model of the three-dimensional attack area solved in just 10^(-4)s,thus meeting the requirements of real-time combat scenarios. 展开更多
关键词 air combat three-dimensional attack area improved backtracking algorithm age-layered population structure genetic programming(ALPS-GP) gradient descent algorithm
在线阅读 下载PDF
Topological optimization of metamaterial absorber based on improved estimation of distribution algorithm
7
作者 TAO Shifei LIU Beichen +2 位作者 LIU Sixing WU Fan WANG Hao 《Journal of Systems Engineering and Electronics》 2025年第3期634-641,共8页
An improved estimation of distribution algorithm(IEDA)is proposed in this paper for efficient design of metamaterial absorbers.This algorithm establishes a probability model through the selected dominant groups and sa... An improved estimation of distribution algorithm(IEDA)is proposed in this paper for efficient design of metamaterial absorbers.This algorithm establishes a probability model through the selected dominant groups and samples from the model to obtain the next generation,avoiding the problem of building-blocks destruction caused by crossover and mutation.Neighboring search from artificial bee colony algorithm(ABCA)is introduced to enhance the local optimization ability and improved to raise the speed of convergence.The probability model is modified by boundary correction and loss correction to enhance the robustness of the algorithm.The proposed IEDA is compared with other intelligent algorithms in relevant references.The results show that the proposed IEDA has faster convergence speed and stronger optimization ability,proving the feasibility and effectiveness of the algorithm. 展开更多
关键词 METAMATERIAL topological optimization estimation of distribution algorithm
在线阅读 下载PDF
An improved genetic algorithm for causal discovery
8
作者 MAO Tengjiao BU Xianjin +2 位作者 CAI Chunxiao LU Yue DU Jing 《Journal of Systems Engineering and Electronics》 2025年第3期768-777,共10页
The learning algorithms of causal discovery mainly include score-based methods and genetic algorithms(GA).The score-based algorithms are prone to searching space explosion.Classical GA is slow to converge,and prone to... The learning algorithms of causal discovery mainly include score-based methods and genetic algorithms(GA).The score-based algorithms are prone to searching space explosion.Classical GA is slow to converge,and prone to falling into local optima.To address these issues,an improved GA with domain knowledge(IGADK)is proposed.Firstly,domain knowledge is incorporated into the learning process of causality to construct a new fitness function.Secondly,a dynamical mutation operator is introduced in the algorithm to accelerate the convergence rate.Finally,an experiment is conducted on simulation data,which compares the classical GA with IGADK with domain knowledge of varying accuracy.The IGADK can greatly reduce the number of iterations,populations,and samples required for learning,which illustrates the efficiency and effectiveness of the proposed algorithm. 展开更多
关键词 genetic algorithm(GA) causal discovery convergence rate fitness function mutation operator
在线阅读 下载PDF
Multi-platform collaborative MRC-PSO algorithm for anti-ship missile path planning
9
作者 LIU Gang GUO Xinyuan +2 位作者 HUANG Dong CHEN Kezhong LI Wu 《Journal of Systems Engineering and Electronics》 2025年第2期494-509,共16页
To solve the problem of multi-platform collaborative use in anti-ship missile (ASM) path planning, this paper pro-posed multi-operator real-time constraints particle swarm opti-mization (MRC-PSO) algorithm. MRC-PSO al... To solve the problem of multi-platform collaborative use in anti-ship missile (ASM) path planning, this paper pro-posed multi-operator real-time constraints particle swarm opti-mization (MRC-PSO) algorithm. MRC-PSO algorithm utilizes a semi-rasterization environment modeling technique and inte-grates the geometric gradient law of ASMs which distinguishes itself from other collaborative path planning algorithms by fully considering the coupling between collaborative paths. Then, MRC-PSO algorithm conducts chunked stepwise recursive evo-lution of particles while incorporating circumvent, coordination, and smoothing operators which facilitates local selection opti-mization of paths, gradually reducing algorithmic space, accele-rating convergence, and enhances path cooperativity. Simula-tion experiments comparing the MRC-PSO algorithm with the PSO algorithm, genetic algorithm and operational area cluster real-time restriction (OACRR)-PSO algorithm, which demon-strate that the MRC-PSO algorithm has a faster convergence speed, and the average number of iterations is reduced by approximately 75%. It also proves that it is equally effective in resolving complex scenarios involving multiple obstacles. More-over it effectively addresses the problem of path crossing and can better satisfy the requirements of multi-platform collabora-tive path planning. The experiments are conducted in three col-laborative operation modes, namely, three-to-two, three-to-three, and four-to-two, and the outcomes demonstrate that the algorithm possesses strong universality. 展开更多
关键词 anti-ship missiles multi-platform collaborative path planning particle swarm optimization(PSO)algorithm
在线阅读 下载PDF
基于粗糙集的改进K-Modes聚类算法 被引量:15
10
作者 白亮 梁吉业 曹付元 《计算机科学》 CSCD 北大核心 2009年第1期162-164,176,共4页
传统的K-Modes算法采用简单匹配的方法来计算对象之间的距离,并没有充分考虑同一属性下的两个不同值之间的相似性。基于粗糙集中的上、下近似,提出了一种新的距离度量,并重新定义了类中心,对传统K-Modes算法进行了改进。与其他改进K-Mo... 传统的K-Modes算法采用简单匹配的方法来计算对象之间的距离,并没有充分考虑同一属性下的两个不同值之间的相似性。基于粗糙集中的上、下近似,提出了一种新的距离度量,并重新定义了类中心,对传统K-Modes算法进行了改进。与其他改进K-Modes算法进行了比较,实验结果表明,基于粗糙集的改进K-Modes算法有效地提高了聚类精度。 展开更多
关键词 聚类算法 粗糙集 距离度量 k-modes算法
在线阅读 下载PDF
基于分类型矩阵对象数据的MD fuzzy k-modes聚类算法 被引量:10
11
作者 李顺勇 张苗苗 曹付元 《计算机研究与发展》 EI CSCD 北大核心 2019年第6期1325-1337,共13页
传统的聚类算法一般是对单值属性数据进行聚类.但在许多实际应用中,每个对象通常被多个特征向量所描述.例如,顾客在购物时可能同时购买多个产品.由多个特征向量描述的对象称为矩阵对象,由矩阵对象构成的数据集称为矩阵对象数据集.目前,... 传统的聚类算法一般是对单值属性数据进行聚类.但在许多实际应用中,每个对象通常被多个特征向量所描述.例如,顾客在购物时可能同时购买多个产品.由多个特征向量描述的对象称为矩阵对象,由矩阵对象构成的数据集称为矩阵对象数据集.目前,针对矩阵对象数据聚类算法的研究相对较少,还有很多问题有待解决.利用fuzzy k-modes算法的聚类过程,提出一种基于矩阵对象数据的matrix-object data fuzzy k-modes(MD fuzzy k-modes)聚类算法.该算法结合模糊集的概念引入模糊因子β,重新定义了矩阵对象间的相异性度量,并给出类中心的启发式更新算法.最后,在5个真实数据集上验证了MD fuzzy k-modes算法的有效性,并分析了模糊因子β与隶属度w之间的关系.大数据时代,利用MD fuzzy k-modes算法对多条记录进行聚类,能更易发现顾客的消费偏好,从而做出更有针对性的推荐. 展开更多
关键词 矩阵对象数据 MD FUZZY k-modes算法 相异性度量 类中心 聚类
在线阅读 下载PDF
基于本地差分隐私的K-modes聚类数据隐私保护方法 被引量:14
12
作者 张少波 原刘杰 +1 位作者 毛新军 朱更明 《电子学报》 EI CAS CSCD 北大核心 2022年第9期2181-2188,共8页
分类型数据聚类是数据挖掘的重要研究内容,聚类数据中通常包含用户一些敏感信息.为保护聚类数据中的用户隐私,当前主要采用基于可信第三方隐私保护模型,但现实中第三方也存在隐私泄露风险.针对此问题,该文引入本地差分隐私技术,提出一... 分类型数据聚类是数据挖掘的重要研究内容,聚类数据中通常包含用户一些敏感信息.为保护聚类数据中的用户隐私,当前主要采用基于可信第三方隐私保护模型,但现实中第三方也存在隐私泄露风险.针对此问题,该文引入本地差分隐私技术,提出一种去可信第三方的K-modes聚类数据隐私保护方法.该方法首先利用随机采样技术对数据进行采样,然后使用本地差分隐私技术对采样数据进行扰动,最后通过聚类服务端与用户的交互迭代完成聚类.在聚类过程中,无需可信第三方对数据进行隐私预处理,避免了第三方泄露用户隐私的风险.理论分析证明了该方法的隐私性和可行性,实验结果表明该方法在满足本地差分隐私机制的前提下保证了聚类结果的质量. 展开更多
关键词 隐私保护 本地差分隐私 数据挖掘 k-modes聚类 去可信第三方
在线阅读 下载PDF
模糊K-Modes聚类精确度分析 被引量:14
13
作者 赵恒 杨万海 《计算机工程》 CAS CSCD 北大核心 2003年第12期27-28,175,共3页
模糊K-Modes聚类算法是对具有分类属性的数据进行聚类的一种有效的算法。为了评价聚类结果,以具有明确分类结构的数据作为输入数据,将模糊K-Modes聚类结果与原始数据的分类结构进行对比,分析了确定它们之间对应关系的方法,在期望聚... 模糊K-Modes聚类算法是对具有分类属性的数据进行聚类的一种有效的算法。为了评价聚类结果,以具有明确分类结构的数据作为输入数据,将模糊K-Modes聚类结果与原始数据的分类结构进行对比,分析了确定它们之间对应关系的方法,在期望聚类结果应该具有的特点的基础上,对现有的精确度定义和计算方法进行修正,在划分相似度的基础上,重新定义模糊K-Modes聚类精确度。 展开更多
关键词 模糊k-modes聚类 精确度 分类属性 相似度
在线阅读 下载PDF
基于K-modes聚类的半导体封装测试粗日投料控制 被引量:1
14
作者 姚丽丽 史海波 刘昶 《计算机集成制造系统》 EI CSCD 北大核心 2014年第7期1743-1750,共8页
针对半导体封装测试粗日投料控制问题,以降低生产过程中的改机代价为目标,提出一种新的基于品种聚类的综合投料控制策略。提出一种新的改进量限定属性赋权K-modes算法对投产品种进行聚类,以瓶颈工序的产能类型个数作为聚类类别个数,同... 针对半导体封装测试粗日投料控制问题,以降低生产过程中的改机代价为目标,提出一种新的基于品种聚类的综合投料控制策略。提出一种新的改进量限定属性赋权K-modes算法对投产品种进行聚类,以瓶颈工序的产能类型个数作为聚类类别个数,同时对各个类别的聚类数目进行限定,依据影响改机代价的投产品种属性信息对投产品种进行聚类。在聚类的基础上,采用基于品种平均和投产量平均结合的综合投料策略确定日投产品种和数量。通过实验验证了所提策略的有效性和优越性。 展开更多
关键词 半导体封装测试 粗日投料控制策略 改机代价 k-modes聚类算法
在线阅读 下载PDF
基于MapReduce自适应参数的粗糙K-modes算法研究
15
作者 杨阳 张为群 +1 位作者 刘枫 黄仁杰 《计算机科学》 CSCD 北大核心 2012年第11期149-152,164,共5页
粗糙K-modes聚类算法需要根据经验为wl、wu和ε3个参数设定其固定值,聚类效果不稳定,容易受到噪声干扰。提出一种基于MapReduce自适应参数的粗糙K-modes算法,它根据聚类不同阶段的特点自动调整参数值,优化聚类效果。在此基础上,对自适... 粗糙K-modes聚类算法需要根据经验为wl、wu和ε3个参数设定其固定值,聚类效果不稳定,容易受到噪声干扰。提出一种基于MapReduce自适应参数的粗糙K-modes算法,它根据聚类不同阶段的特点自动调整参数值,优化聚类效果。在此基础上,对自适应参数的粗糙K-modes算法进行MapReduce并行化设计,以提高算法的运行效率。实验证明,提出的自适应参数的粗糙K-modes算法聚类效果稳定,通过对算法的并行设计提高了算法对大规模数据的聚类分析性能。 展开更多
关键词 粗糙k-modes 自适应参数 MapReduce并行化
在线阅读 下载PDF
动态的模糊K-Modes初始化算法 被引量:1
16
作者 张伟 周霆 +1 位作者 陈芸 邹汉斌 《计算机工程与设计》 CSCD 北大核心 2006年第4期682-683,707,共3页
模糊K-Modes聚类算法针对分类属性的数据进行聚类,使用爬山法来寻找最优解,因此该算法对初始值较为敏感。为了克服该缺点,提出一种动态的模糊K-Modes初始化算法,该方法能够自动确定聚类数目,以及对应的聚类中心;而且能够应用于数值属性... 模糊K-Modes聚类算法针对分类属性的数据进行聚类,使用爬山法来寻找最优解,因此该算法对初始值较为敏感。为了克服该缺点,提出一种动态的模糊K-Modes初始化算法,该方法能够自动确定聚类数目,以及对应的聚类中心;而且能够应用于数值属性和分类属性相混合的数据集。该初始化算法可以有效地克服模糊K-Modes算法对初值的敏感性。实验的结果表明了该初始化算法的可行性和有效性。 展开更多
关键词 模糊 K—Modes算法 动态初始化算法 聚类中心 分类属性
在线阅读 下载PDF
基于离散小波变换和模糊K-modes的负荷聚类算法 被引量:25
17
作者 张江林 张亚超 +2 位作者 洪居华 高红均 刘俊勇 《电力自动化设备》 EI CSCD 北大核心 2019年第2期100-106,122,共8页
为了研究智能电网背景下用户的用电模式,考虑到现有聚类算法的不足,提出了一种基于离散小波变换的模糊K-modes聚类算法。利用离散小波变换将时域的负荷曲线转换到频域,从而将负荷曲线的不同特征隔离在不同的频域水平,并利用低阶近似的... 为了研究智能电网背景下用户的用电模式,考虑到现有聚类算法的不足,提出了一种基于离散小波变换的模糊K-modes聚类算法。利用离散小波变换将时域的负荷曲线转换到频域,从而将负荷曲线的不同特征隔离在不同的频域水平,并利用低阶近似的思想选取原始曲线的有效分量曲线;对所选的分量曲线进行趋势编码,将连续负荷数据转化为离散类属性数据;基于平均密度确定初始聚类条件,利用模糊K-modes聚类算法对曲线进行形态聚类,得到负荷曲线模板;将所提算法与传统K-means算法及层次聚类算法进行比较,从而验证了所提算法的有效性。 展开更多
关键词 智能电网 负荷聚类 离散小波变换 模糊k-modes聚类算法 用电模式
在线阅读 下载PDF
基于新的距离度量的K-Modes聚类算法 被引量:47
18
作者 梁吉业 白亮 曹付元 《计算机研究与发展》 EI CSCD 北大核心 2010年第10期1749-1755,共7页
传统的K-Modes聚类算法采用简单的0-1匹配差异方法来计算同一分类属性下两个属性值之间的距离,没有充分考虑其相似性.对此,基于粗糙集理论,提出了一种新的距离度量.该距离度量在度量同一分类属性下两个属性值之间的差异时,克服了简单0-... 传统的K-Modes聚类算法采用简单的0-1匹配差异方法来计算同一分类属性下两个属性值之间的距离,没有充分考虑其相似性.对此,基于粗糙集理论,提出了一种新的距离度量.该距离度量在度量同一分类属性下两个属性值之间的差异时,克服了简单0-1匹配差异法的不足,既考虑了它们本身的异同,又考虑了其他相关分类属性对它们的区分性.并将提出的距离度量应用于传统K-Modes聚类算法中.通过与基于其他距离度量的K-Modes聚类算法进行实验比较,结果表明新的距离度量是更加有效的. 展开更多
关键词 聚类算法 分类属性数据 粗糙集 粗糙隶属度 距离度量
在线阅读 下载PDF
基于相互依存冗余度量的k-modes算法 被引量:6
19
作者 黄苑华 郝志峰 +1 位作者 蔡瑞初 谢峰 《小型微型计算机系统》 CSCD 北大核心 2016年第8期1790-1793,共4页
距离度量是聚类算法的基础,它对算法的效果有很大的影响.然而分类型数据的聚类是学习算法中重要而棘手的问题.传统的k-modes算法采用0-1匹配方法定义每两个对象属性值之间的距离,忽视了属性间的相互关系对距离的影响.针对这个问题,本文... 距离度量是聚类算法的基础,它对算法的效果有很大的影响.然而分类型数据的聚类是学习算法中重要而棘手的问题.传统的k-modes算法采用0-1匹配方法定义每两个对象属性值之间的距离,忽视了属性间的相互关系对距离的影响.针对这个问题,本文基于相互依存冗余度量定义了一种新的距离,该距离由内部距离和外部距离两个部分决定.这种度量方法不仅表现出某个属性本身的差异性,而且表现出其他属性对该属性的影响程度.本文与基于其他距离度量的k-modes算法进行实验比较,结果表明基于相互依存冗余度量的k-modes算法能有效地提高算法的聚类精度. 展开更多
关键词 k-modes算法 分类型属性 相互依存冗余度量
在线阅读 下载PDF
基于新的相异度量的模糊K-Modes聚类算法 被引量:5
20
作者 白亮 曹付元 梁吉业 《计算机工程》 CAS CSCD 北大核心 2009年第16期192-194,共3页
传统的模糊K-Modes聚类算法采用简单匹配方法度量对象与Mode之间的相异程度,没有充分考虑Mode对类的代表程度,容易造成信息的丢失,弱化了类内的相似性。针对上述问题,通过对象对类的隶属度反映Mode对类的代表程度,提出一种新的相异度量... 传统的模糊K-Modes聚类算法采用简单匹配方法度量对象与Mode之间的相异程度,没有充分考虑Mode对类的代表程度,容易造成信息的丢失,弱化了类内的相似性。针对上述问题,通过对象对类的隶属度反映Mode对类的代表程度,提出一种新的相异度量,并将它应用于传统的模糊K-Modes聚类算法。与传统的K-Modes和模糊K-Modes聚类算法相比,该相异度量是有效的。 展开更多
关键词 模糊K—Modes聚类算法 相异度量 类中心
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部