Cellulose nanofibrils(CNFs) are a type of natural nanomaterials extracted from plants and animals that have expanding applications in numerous areas benefiting from their inherent properties of renewability,biodegrada...Cellulose nanofibrils(CNFs) are a type of natural nanomaterials extracted from plants and animals that have expanding applications in numerous areas benefiting from their inherent properties of renewability,biodegradability,and sustainability.For energy consumption reduction,CNFs were extracted from raw jute fibers,which were not pretreated in a hot alkali or acid solution,by TEMPOmediated oxidation.Synchrotron radiation wide-angle scattering was performed to realize the crystallization of the CNF crystallites;Fourier transform infrared spectroscopy,transmission electron microscopy,and fieldemission scanning electron microscopy were used to characterize the changes in chemical groups and visualized morphology of CNFs.The simplified preparation and shortened cycle should further help the study of the structure–function relationship of jute CNFs subjected to chemical modification.展开更多
Natural fiber composites have been proved to have the ability to replace the synthetic fiber composites in many structural applications. Unprecedented growth in the field of computational techniques has opened the doo...Natural fiber composites have been proved to have the ability to replace the synthetic fiber composites in many structural applications. Unprecedented growth in the field of computational techniques has opened the doors of analysis and simulation of composite materials under various environment.Modelling and simulation using various available softwares saves a lot of time and resources. In the present work, an attempt has been made to analyze the tensile behavior of jute fiber reinforced epoxy based polymer composite materials using the student version of commercially available finite element code Siemens PLM NX 10.0. In most of the structural applications, materials are required to have enough stiffness to resist the shape deformation under normal loading conditions. Therefore, emphasis is given to the load-deformation behavior of the developed composites. A 3-dimensional model of the test specimen was developed using ply-stacking method and the strain-stress values were verified by the available literature. The model showed a good agreement between the experimental and software results. Effect of ply angle, fiber percentage, fiber type, number of layers and weft fiber angle on the stiffness of laminate have been studied.展开更多
基金supported by the National Nature Science Foundation of China(Nos.11505272,51773221,U1732123)Youth Innovation Promotion Association CAS(No.2017308)
文摘Cellulose nanofibrils(CNFs) are a type of natural nanomaterials extracted from plants and animals that have expanding applications in numerous areas benefiting from their inherent properties of renewability,biodegradability,and sustainability.For energy consumption reduction,CNFs were extracted from raw jute fibers,which were not pretreated in a hot alkali or acid solution,by TEMPOmediated oxidation.Synchrotron radiation wide-angle scattering was performed to realize the crystallization of the CNF crystallites;Fourier transform infrared spectroscopy,transmission electron microscopy,and fieldemission scanning electron microscopy were used to characterize the changes in chemical groups and visualized morphology of CNFs.The simplified preparation and shortened cycle should further help the study of the structure–function relationship of jute CNFs subjected to chemical modification.
文摘Natural fiber composites have been proved to have the ability to replace the synthetic fiber composites in many structural applications. Unprecedented growth in the field of computational techniques has opened the doors of analysis and simulation of composite materials under various environment.Modelling and simulation using various available softwares saves a lot of time and resources. In the present work, an attempt has been made to analyze the tensile behavior of jute fiber reinforced epoxy based polymer composite materials using the student version of commercially available finite element code Siemens PLM NX 10.0. In most of the structural applications, materials are required to have enough stiffness to resist the shape deformation under normal loading conditions. Therefore, emphasis is given to the load-deformation behavior of the developed composites. A 3-dimensional model of the test specimen was developed using ply-stacking method and the strain-stress values were verified by the available literature. The model showed a good agreement between the experimental and software results. Effect of ply angle, fiber percentage, fiber type, number of layers and weft fiber angle on the stiffness of laminate have been studied.