Solder joint,crucial component in electronic systems,face significant challenges when exposed to extreme conditions during applications.The solder joint reliability involving microstructure and mechanical properties w...Solder joint,crucial component in electronic systems,face significant challenges when exposed to extreme conditions during applications.The solder joint reliability involving microstructure and mechanical properties will be affected by extreme conditions.Understanding the behaviour of solder joints under extreme conditions is vital to determine the durability and reliability of solder joint.This review paper aims to comprehensively explore the underlying failure mechanism affecting solder joint reliability under extreme conditions.This study covers an in-depth analysis of effect extreme temperature,mechanical stress,and radiation conditions towards solder joint.Impact of each condition to the microstructure including solder matrix and intermetallic compound layer,and mechanical properties such as fatigue,shear strength,creep,and hardness was thoroughly discussed.The failure mechanisms were illustrated in graphical diagrams to ensure clarity and understanding.Furthermore,the paper highlighted mitigation strategies that enhancing solder joint reliability under challenging operating conditions.The findings offer valuable guidance for researchers,engineers,and practitioners involved in electronics,engineering,and related fields,fostering advancements in solder joint reliability and performance.展开更多
The object of this article is to investigate the energy evolution mechanism and failure criteria of cross-jointed samples containing an opening during deformation and failure based on the uniaxial compression test and...The object of this article is to investigate the energy evolution mechanism and failure criteria of cross-jointed samples containing an opening during deformation and failure based on the uniaxial compression test and rock energy principle.The results show that the energy evolution characteristics of the samples correspond to a typical progressive damage mode.The peak total energy,peak elastic energy,and total input energy of the samples all first decrease and then increase with an increase of half of the included angle,reaching their minimum values when this angle is 45°,while the dissipated energy generally increases with this angle.The existence of the opening and cross joints can obviously weaken the energy storage capacity of the rock,and the change in the included angle of the cross joint has a great influence on the elastic energy ratio of the sample before the peak stress,which leads to some differences in the distribution laws of the input energy.The continuous change and the subsequent sharp change in the rate of change in the energy consumption ratio can be used as the criteria of the crack initiation and propagation and the unstable failure of the sample,respectively.展开更多
This paper presents a model of fatigue crack growth in a welded joint and a two-dimensional model of anodic dissolution based on Donahue model and anodic dissolution mechanism,respectively.In addition,a model for pred...This paper presents a model of fatigue crack growth in a welded joint and a two-dimensional model of anodic dissolution based on Donahue model and anodic dissolution mechanism,respectively.In addition,a model for predicting the corrosion fatigue crack growth rate in welded joints of steel marine structures is established and crack growth mechanisms are analyzed.The results show that during early stages of crack growth,corrosion fatigue crack growth rate in welded joints is mainly controlled by corrosion action,whereas cyclic loading becomes more influential during the later stage of crack propagation.Loading frequency and effective stress ratio can affect rupture period of protective film at the corrosion fatigue crack tip and the length of corrosion crack increment,respectively,which changes the influence of corrosion action on crack growth rate.However,the impact of stress amplitude on crack growth rate is only significant when crack propagation is caused by cyclic loading.Welding residual stress not only improves the effective stress ratio of cyclic loading,but also promotes crack closure and increases corrosion fatigue crack growth rate in welded joints.Compared to corrosion action,welding residual stress has a more significant influence on crack growth caused by cyclic loading.展开更多
The collision and wear caused by inevitable clearance in kinematic pair have an effect on the dynamic characteristics of the mechanism.Therefore,we established the dynamic model of a 3RSR(R is the revolute joint and S...The collision and wear caused by inevitable clearance in kinematic pair have an effect on the dynamic characteristics of the mechanism.Therefore,we established the dynamic model of a 3RSR(R is the revolute joint and S is the spherical joint)parallel mechanism with spherical joint clearance based on the modified Flores contact force model and the modified Coulomb friction model using Newton-Euler method.The standard quaternion was introduced in the constraint equation,and the four-order Runge-Kutta method was adopted to solve the 3RSR dynamic model.The simulation results were compared and analyzed with the numerical results.The geometrical parameters of the worn ball socket were solved based on the Archard wear model,and the geometrical reconstruction of the worn surface was carried out.The geometric reconstruction parameters were substituted into the dynamic model,which was to analyze the dynamic response of the 3RSR parallel mechanism with wear and spherical joint clearance.The simulation results show that the irregular wear occurs in the spherical joint with clearance under the presence of the impact and friction force.The long-term wear will increase the fluctuation of the contact force,thereby decreasing the movement stability of the mechanism.展开更多
The special columnar jointed structure endows rocks with significant anisotropy,accurately grasping the strength and deformation properties of a columnar jointed rock mass(CJRM)under complex geological conditions is c...The special columnar jointed structure endows rocks with significant anisotropy,accurately grasping the strength and deformation properties of a columnar jointed rock mass(CJRM)under complex geological conditions is crucial for related engineering safety.Combined with the irregular jointed networks observed in the field,artificial irregular CJRM(ICJRM)samples with various inclination angles were prepared for triaxial tests.The results showed that the increase in confining pressure can enhance the ability of the ICJRM to resist deformation and failure,and reduce the deformation and strength anisotropic degrees.Considering the field stress situation,the engineering parts with an inclination angle of 30°−45°need to be taken seriously.Four typical failure modes were identified,and the sample with an inclination angle of 15°showed the same failure behavior as the field CJRM.Traditional and improved joint factor methods were used to establish empirical relationships for predicting the strength and deformation of CJRM under triaxial stress.Since the improved joint factor method can reflect the unique structure of CJRM,the predictive ability of the empirical relationship based on the improved method is better than that based on the traditional joint factor method.展开更多
In the practical slope engineering,the stability of lower sliding mass(region A)with back tensile cracks of the jointed rock slope attracts more attentions,but the upper rock mass(region B)may also be unstable.Therefo...In the practical slope engineering,the stability of lower sliding mass(region A)with back tensile cracks of the jointed rock slope attracts more attentions,but the upper rock mass(region B)may also be unstable.Therefore,in this study,based on the stepped failure mode of bedding jointed rock slopes,considering the influence of the upper rock mass on the lower stepped sliding mass,the improved failure model for analyzing the interaction force(F_(AB))between two regions is constructed,and the safety factors(F_(S))of two regions and whole region are derived.In addition,this paper proposes a method to determine the existence of F_(AB) using their respective acceleration values(a_(A) and a_(B))when regions A and B are unstable.The influences of key parameters on two regions and the whole region are analyzed.The results show that the variation of the F_(AB) and F_(S) of two regions can be obtained accurately based on the improved failure model.The accuracy of the improved failure model is verified by comparative analysis.The research results can explain the interaction mechanism of two regions and the natural phenomenon of slope failure caused by the development of cracks.展开更多
The microstructure and mechanical properties of dissimilar pinless friction stir spot welded joint of2A12aluminum alloy and TC4titanium alloy were evaluated.The results show that the joint of Al/Ti dissimilar alloys c...The microstructure and mechanical properties of dissimilar pinless friction stir spot welded joint of2A12aluminum alloy and TC4titanium alloy were evaluated.The results show that the joint of Al/Ti dissimilar alloys can be successfully attained through pinless friction stir spot welding(FSSW).The joint can be divided into three zones(SZ,TMAZ and HAZ).The microstructure of joint in Al alloy side changes significantly but it basically has no change in Ti alloy side.At the same rotation speed,the maximum load of welded joints gradually rises with the increase in dwell time.At the same dwell time,the maximum load of the welded joint increases with the increase of the rotational speed.In addition,optimal parameters were obtained in this work,and they are rotation speed of1500r/min,plunge speed of30mm/min,plunge depth of0.3mm and dwell time of15s.The fracture mode of welded joints is interfacial shear fracture.The microhardness of the joint on the Al side distributes in a typical“W”type and is symmetry along the weld center,but the distribution of the microhardness on the Ti side has no obvious change.展开更多
Analyzes the mechanism of overvoltage when contactless tap changer switch which is applied in distributing transformer converted directly.When the device convert the tap off,it employs the way that the SSR is switche...Analyzes the mechanism of overvoltage when contactless tap changer switch which is applied in distributing transformer converted directly.When the device convert the tap off,it employs the way that the SSR is switched on when voltage through zero and switched off when current through zero.But in the experiment we found that overvoltage will occur in the process of changing tap changer.The paper illustrates the mechanism of overvoltage in theory by analyzing the equivalent circuit and using analytic method of transition process.展开更多
The present research introduces a unique concept of scarf joint technique in friction stir welding(FSW) of aluminum alloy AA 6061-T6 plates and an investigation on weld quality.A new joint configuration with two disti...The present research introduces a unique concept of scarf joint technique in friction stir welding(FSW) of aluminum alloy AA 6061-T6 plates and an investigation on weld quality.A new joint configuration with two distinct scarf angles(75°and 60°) was considered in this study.The various aspects of welding were compared with contemporary simple square butt(SSB) joint configuration.Welding was carried out at a constant tool rotation speed(TRS),tool traverse speed(TTS) and tool tilt angle of 1100 rpm,2 mm/s and2°,respectively.The results are analyzed in terms of force and torque distribution,microstructure,macrostructure,and mechanical property perspective for different joint configurations.The study reveals the minimum amount of force and torque at 60°scarf angle joint configuration compared to that of square butt joint configuration.Macro study shows that all the joints were defect-free,and a prominent onion ring was present in the lower portion of the weld nugget(WN).Fine equiaxed grains with a minimum average grain size diameter of 6.82 μm were obtained in the WN of scarf joint configuration(SJC).The maximum ultimate tensile strength(UTS) and maximum average NZ hardness of 267 MPa and83.82 HV0.1were obtained in SJC3 at a scarf angle of 60°.It has been observed from the investigation that the joint efficiency increases from 72.5%(SSB) to 86%(SJC3) at a 60° scarf angle.This unique characteristic may lay an impetus on probable joint strength enhancement technique without increasing the production cost.展开更多
In the realm of military and defence applications, exposure to radiation significantly challenges the performance and reliability of solder alloys and joints in electronic systems. This comprehensive review examines r...In the realm of military and defence applications, exposure to radiation significantly challenges the performance and reliability of solder alloys and joints in electronic systems. This comprehensive review examines radiation-induced effects on solder alloys and solder joints in terms of microstructure and mechanical properties. In this paper, we evaluate the existing literature, including experimental studies and fundamental theory, to provide a comprehensive overview of the behavior of solder materials under radiation. A review of the literature highlights key mechanisms that contribute to radiation-induced changes in the microstructure, such as the formation of intermetallic compounds, grain growth,micro-voids and micro-cracks. Radiation is explored as a factor influencing solder alloy hardness,strength, fatigue and ductility. Moreover, the review addresses the challenges and limitations inherent in studying the effects of radiation on solder materials and offers recommendations for future research. It is crucial to understand radiation-induced effects on solder performance to design robust and radiationresistant electronic systems. A review of radiation effects on solder materials and their applications in electronics serves as a valuable resource for researchers, engineers, and practitioners in that field.展开更多
The construction and development of social public management's new normal depend on the scientific transformation of government functionalization orientation and highlighting the role of grassroots public's ex...The construction and development of social public management's new normal depend on the scientific transformation of government functionalization orientation and highlighting the role of grassroots public's extensive illustrations on social issues and social conditions.Based on this situation,in the process of public participation mechanism construction,it is necessary to emphasize that the construction of joint elements should be carried out systematically and comprehensively,and to dig deep into the relations and functions of all elements.When the stability of public participation mechanism construction is fully guaranteed,it will extensively supervise and evaluate the development of government's social public management cause,help achieve the final goal of coordinating social development environment and social development elements,ensure that the intrinsic value of public participation mechanism can be thoroughly displayed.展开更多
To address the issue of extreme thermal-induced arching in CRTS II slab tracks due to joint damage,an optimized joint repair model was proposed.First,the formula for calculating the safe temperature rise of the track ...To address the issue of extreme thermal-induced arching in CRTS II slab tracks due to joint damage,an optimized joint repair model was proposed.First,the formula for calculating the safe temperature rise of the track was derived based on the principle of stationary potential energy.Considering interlayer evolution and structural crack propagation,an optimized joint repair model for the track was established and validated.Subsequently,the impact of joint repair on track damage and arch stability under extreme temperatures was studied,and a comprehensive evaluation of the feasibility of joint repair and the evolution of damage after repair was conducted.The results show that after the joint repair,the temperature rise of the initial damage of the track structure can be increased by 11℃.Under the most unfavorable heating load with a superimposed temperature gradient,the maximum stiffness degradation index SDEG in the track structure is reduced by about 81.16%following joint repair.The joint repair process could effectively reduce the deformation of the slab arching under high temperatures,resulting in a reduction of 93.96%in upward arching deformation.After repair,with the damage to interfacing shear strength,the track arch increases by 2.616 mm.展开更多
基金fully supported by a Tabung Amanah Pusat Pengurusan Penyelidikan&Inovasi(PPPI)(Grant No.PS060-UPNM/2023/GPPP/SG/1)Universiti Pertahanan Nasional Malaysia(UPNM)for funding this study。
文摘Solder joint,crucial component in electronic systems,face significant challenges when exposed to extreme conditions during applications.The solder joint reliability involving microstructure and mechanical properties will be affected by extreme conditions.Understanding the behaviour of solder joints under extreme conditions is vital to determine the durability and reliability of solder joint.This review paper aims to comprehensively explore the underlying failure mechanism affecting solder joint reliability under extreme conditions.This study covers an in-depth analysis of effect extreme temperature,mechanical stress,and radiation conditions towards solder joint.Impact of each condition to the microstructure including solder matrix and intermetallic compound layer,and mechanical properties such as fatigue,shear strength,creep,and hardness was thoroughly discussed.The failure mechanisms were illustrated in graphical diagrams to ensure clarity and understanding.Furthermore,the paper highlighted mitigation strategies that enhancing solder joint reliability under challenging operating conditions.The findings offer valuable guidance for researchers,engineers,and practitioners involved in electronics,engineering,and related fields,fostering advancements in solder joint reliability and performance.
基金Project(FRF-TP-20-041A1)supported by the Fundamental Research Funds for the Central Universities,ChinaProjects(2016YFC0600801,2017YFC0804103)supported by the State Key Research Development Program of ChinaProjects(51774022,52074020)supported by the National Natural Science Foundation of China.
文摘The object of this article is to investigate the energy evolution mechanism and failure criteria of cross-jointed samples containing an opening during deformation and failure based on the uniaxial compression test and rock energy principle.The results show that the energy evolution characteristics of the samples correspond to a typical progressive damage mode.The peak total energy,peak elastic energy,and total input energy of the samples all first decrease and then increase with an increase of half of the included angle,reaching their minimum values when this angle is 45°,while the dissipated energy generally increases with this angle.The existence of the opening and cross joints can obviously weaken the energy storage capacity of the rock,and the change in the included angle of the cross joint has a great influence on the elastic energy ratio of the sample before the peak stress,which leads to some differences in the distribution laws of the input energy.The continuous change and the subsequent sharp change in the rate of change in the energy consumption ratio can be used as the criteria of the crack initiation and propagation and the unstable failure of the sample,respectively.
基金Project(2018M643852)supported by the Postdoctoral Science Foundation of ChinaProjects(30110010403,30110030103)supported by Equipment Pre-Research Project,ChinaProject(51979280)supported by the National Natural Science Foundation of China。
文摘This paper presents a model of fatigue crack growth in a welded joint and a two-dimensional model of anodic dissolution based on Donahue model and anodic dissolution mechanism,respectively.In addition,a model for predicting the corrosion fatigue crack growth rate in welded joints of steel marine structures is established and crack growth mechanisms are analyzed.The results show that during early stages of crack growth,corrosion fatigue crack growth rate in welded joints is mainly controlled by corrosion action,whereas cyclic loading becomes more influential during the later stage of crack propagation.Loading frequency and effective stress ratio can affect rupture period of protective film at the corrosion fatigue crack tip and the length of corrosion crack increment,respectively,which changes the influence of corrosion action on crack growth rate.However,the impact of stress amplitude on crack growth rate is only significant when crack propagation is caused by cyclic loading.Welding residual stress not only improves the effective stress ratio of cyclic loading,but also promotes crack closure and increases corrosion fatigue crack growth rate in welded joints.Compared to corrosion action,welding residual stress has a more significant influence on crack growth caused by cyclic loading.
基金Project(2018YFB1307900)supported by the National Key R&D Program of ChinaProject(51775473)supported by the National Natural Science Foundation of China+3 种基金Projects(E2018203140,E2019203109)supported by the Natural Science Foundation of Hebei Province,ChinaProject(ZD2019020)supported by the Key Research Project in Higher Education Institutions of Hebei Province,ChinaProject(2017KSYS009)supported by the Key Laboratory of Robotics and Intelligent Equipment of Guangdong Regular Institutions of Higher Education,ChinaProject(KCYCXPT2017006)supported by the Innovation Center of Robotics and Intelligent Equipment of Dongguan University of Technology,China。
文摘The collision and wear caused by inevitable clearance in kinematic pair have an effect on the dynamic characteristics of the mechanism.Therefore,we established the dynamic model of a 3RSR(R is the revolute joint and S is the spherical joint)parallel mechanism with spherical joint clearance based on the modified Flores contact force model and the modified Coulomb friction model using Newton-Euler method.The standard quaternion was introduced in the constraint equation,and the four-order Runge-Kutta method was adopted to solve the 3RSR dynamic model.The simulation results were compared and analyzed with the numerical results.The geometrical parameters of the worn ball socket were solved based on the Archard wear model,and the geometrical reconstruction of the worn surface was carried out.The geometric reconstruction parameters were substituted into the dynamic model,which was to analyze the dynamic response of the 3RSR parallel mechanism with wear and spherical joint clearance.The simulation results show that the irregular wear occurs in the spherical joint with clearance under the presence of the impact and friction force.The long-term wear will increase the fluctuation of the contact force,thereby decreasing the movement stability of the mechanism.
基金Projects(42307192,41831278)supported by the National Natural Science Foundation of ChinaProject(CKWV20231175/KY)supported by the CRSRI Open Research Program,China。
文摘The special columnar jointed structure endows rocks with significant anisotropy,accurately grasping the strength and deformation properties of a columnar jointed rock mass(CJRM)under complex geological conditions is crucial for related engineering safety.Combined with the irregular jointed networks observed in the field,artificial irregular CJRM(ICJRM)samples with various inclination angles were prepared for triaxial tests.The results showed that the increase in confining pressure can enhance the ability of the ICJRM to resist deformation and failure,and reduce the deformation and strength anisotropic degrees.Considering the field stress situation,the engineering parts with an inclination angle of 30°−45°need to be taken seriously.Four typical failure modes were identified,and the sample with an inclination angle of 15°showed the same failure behavior as the field CJRM.Traditional and improved joint factor methods were used to establish empirical relationships for predicting the strength and deformation of CJRM under triaxial stress.Since the improved joint factor method can reflect the unique structure of CJRM,the predictive ability of the empirical relationship based on the improved method is better than that based on the traditional joint factor method.
基金Projects(52208369,52309138,52108320)supported by the National Natural Science Foundation of ChinaProjects(2023NSFSC0284,2025ZNSFSC0409)supported by the Sichuan Science and Technology Program,ChinaProject(U22468214)supported by the Joint Fund Project for Railway Basic Research by the National Natural Science Foundation of China and China State Railway Group Co.,Ltd.
文摘In the practical slope engineering,the stability of lower sliding mass(region A)with back tensile cracks of the jointed rock slope attracts more attentions,but the upper rock mass(region B)may also be unstable.Therefore,in this study,based on the stepped failure mode of bedding jointed rock slopes,considering the influence of the upper rock mass on the lower stepped sliding mass,the improved failure model for analyzing the interaction force(F_(AB))between two regions is constructed,and the safety factors(F_(S))of two regions and whole region are derived.In addition,this paper proposes a method to determine the existence of F_(AB) using their respective acceleration values(a_(A) and a_(B))when regions A and B are unstable.The influences of key parameters on two regions and the whole region are analyzed.The results show that the variation of the F_(AB) and F_(S) of two regions can be obtained accurately based on the improved failure model.The accuracy of the improved failure model is verified by comparative analysis.The research results can explain the interaction mechanism of two regions and the natural phenomenon of slope failure caused by the development of cracks.
基金Projects(51405389,51675435)supported by the National Natural Science Foundation of ChinaProject(3102017ZY005)supported by the Fundamental Research Funds for the Central Universities,China+3 种基金Project(SAST2016043)supported by the Fund of SAST,ChinaProject(20161125002)supported by the Aeronautical Science Foundation of ChinaProject(B08040)supported by the 111 Project,ChinaProjects(2016YFB0701203,2016YFB1100104)supported by the National Key Research and Development Program of China
文摘The microstructure and mechanical properties of dissimilar pinless friction stir spot welded joint of2A12aluminum alloy and TC4titanium alloy were evaluated.The results show that the joint of Al/Ti dissimilar alloys can be successfully attained through pinless friction stir spot welding(FSSW).The joint can be divided into three zones(SZ,TMAZ and HAZ).The microstructure of joint in Al alloy side changes significantly but it basically has no change in Ti alloy side.At the same rotation speed,the maximum load of welded joints gradually rises with the increase in dwell time.At the same dwell time,the maximum load of the welded joint increases with the increase of the rotational speed.In addition,optimal parameters were obtained in this work,and they are rotation speed of1500r/min,plunge speed of30mm/min,plunge depth of0.3mm and dwell time of15s.The fracture mode of welded joints is interfacial shear fracture.The microhardness of the joint on the Al side distributes in a typical“W”type and is symmetry along the weld center,but the distribution of the microhardness on the Ti side has no obvious change.
基金Harbin science an technology officecontract num ber is 0 0 112 110 98
文摘Analyzes the mechanism of overvoltage when contactless tap changer switch which is applied in distributing transformer converted directly.When the device convert the tap off,it employs the way that the SSR is switched on when voltage through zero and switched off when current through zero.But in the experiment we found that overvoltage will occur in the process of changing tap changer.The paper illustrates the mechanism of overvoltage in theory by analyzing the equivalent circuit and using analytic method of transition process.
基金the Ministry of Human Resource and Development,Government of India for providing the financial assistantship in the form of fellowship。
文摘The present research introduces a unique concept of scarf joint technique in friction stir welding(FSW) of aluminum alloy AA 6061-T6 plates and an investigation on weld quality.A new joint configuration with two distinct scarf angles(75°and 60°) was considered in this study.The various aspects of welding were compared with contemporary simple square butt(SSB) joint configuration.Welding was carried out at a constant tool rotation speed(TRS),tool traverse speed(TTS) and tool tilt angle of 1100 rpm,2 mm/s and2°,respectively.The results are analyzed in terms of force and torque distribution,microstructure,macrostructure,and mechanical property perspective for different joint configurations.The study reveals the minimum amount of force and torque at 60°scarf angle joint configuration compared to that of square butt joint configuration.Macro study shows that all the joints were defect-free,and a prominent onion ring was present in the lower portion of the weld nugget(WN).Fine equiaxed grains with a minimum average grain size diameter of 6.82 μm were obtained in the WN of scarf joint configuration(SJC).The maximum ultimate tensile strength(UTS) and maximum average NZ hardness of 267 MPa and83.82 HV0.1were obtained in SJC3 at a scarf angle of 60°.It has been observed from the investigation that the joint efficiency increases from 72.5%(SSB) to 86%(SJC3) at a 60° scarf angle.This unique characteristic may lay an impetus on probable joint strength enhancement technique without increasing the production cost.
基金fully supported by a Tabung Amanah Pusat Pengurusan Penyelidikan dan Inovasi (PPPI) grant (UPNM/2023/GPPP/SG/1)Universiti Pertahanan Nasional Malaysia (UPNM) for funding this study。
文摘In the realm of military and defence applications, exposure to radiation significantly challenges the performance and reliability of solder alloys and joints in electronic systems. This comprehensive review examines radiation-induced effects on solder alloys and solder joints in terms of microstructure and mechanical properties. In this paper, we evaluate the existing literature, including experimental studies and fundamental theory, to provide a comprehensive overview of the behavior of solder materials under radiation. A review of the literature highlights key mechanisms that contribute to radiation-induced changes in the microstructure, such as the formation of intermetallic compounds, grain growth,micro-voids and micro-cracks. Radiation is explored as a factor influencing solder alloy hardness,strength, fatigue and ductility. Moreover, the review addresses the challenges and limitations inherent in studying the effects of radiation on solder materials and offers recommendations for future research. It is crucial to understand radiation-induced effects on solder performance to design robust and radiationresistant electronic systems. A review of radiation effects on solder materials and their applications in electronics serves as a valuable resource for researchers, engineers, and practitioners in that field.
基金supported by the Research Program of Henan Federation of Humanities and Social Sciences entitled“The Research of Chinese Higher Education Model”(SKL-2011-2135)
文摘The construction and development of social public management's new normal depend on the scientific transformation of government functionalization orientation and highlighting the role of grassroots public's extensive illustrations on social issues and social conditions.Based on this situation,in the process of public participation mechanism construction,it is necessary to emphasize that the construction of joint elements should be carried out systematically and comprehensively,and to dig deep into the relations and functions of all elements.When the stability of public participation mechanism construction is fully guaranteed,it will extensively supervise and evaluate the development of government's social public management cause,help achieve the final goal of coordinating social development environment and social development elements,ensure that the intrinsic value of public participation mechanism can be thoroughly displayed.
基金Project(K2022G038)supported by the Science Technology Research and Development Program of China State Railway Group Co.,LtdProject(52178405)supported by the National Natural Science Foundation of China。
文摘To address the issue of extreme thermal-induced arching in CRTS II slab tracks due to joint damage,an optimized joint repair model was proposed.First,the formula for calculating the safe temperature rise of the track was derived based on the principle of stationary potential energy.Considering interlayer evolution and structural crack propagation,an optimized joint repair model for the track was established and validated.Subsequently,the impact of joint repair on track damage and arch stability under extreme temperatures was studied,and a comprehensive evaluation of the feasibility of joint repair and the evolution of damage after repair was conducted.The results show that after the joint repair,the temperature rise of the initial damage of the track structure can be increased by 11℃.Under the most unfavorable heating load with a superimposed temperature gradient,the maximum stiffness degradation index SDEG in the track structure is reduced by about 81.16%following joint repair.The joint repair process could effectively reduce the deformation of the slab arching under high temperatures,resulting in a reduction of 93.96%in upward arching deformation.After repair,with the damage to interfacing shear strength,the track arch increases by 2.616 mm.