期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Fault-observer-based iterative learning model predictive controller for trajectory tracking of hypersonic vehicles
1
作者 CUI Peng GAO Changsheng AN Ruoming 《Journal of Systems Engineering and Electronics》 2025年第3期803-813,共11页
This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hype... This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hypersonic vehicles.In order to increase the control amount,this online control legislation makes use of model predictive control(MPC)that is based on the concept of iterative learning control(ILC).By using offline data to decrease the linearized model’s faults,the strategy may effectively increase the robustness of the control system and guarantee that disturbances can be suppressed.An adaptive fault observer is created based on the suggested ILMPC approach in order to enhance overall fault tolerance by estimating and compensating for actuator disturbance and fault degree.During the derivation process,a linearized model of longitudinal dynamics is established.The suggested ILMPC approach is likely to be used in the design of hypersonic vehicle control systems since numerical simulations have demonstrated that it can decrease tracking error and speed up convergence when compared to the offline controller. 展开更多
关键词 hypersonic vehicle actuator fault tracking control iterative learning control(ILC) model predictive control(MPC) fault observer
在线阅读 下载PDF
Fuzzy iterative learning control of electro-hydraulic servo system for SRM direct-drive volume control hydraulic press 被引量:18
2
作者 郑建明 赵升吨 魏树国 《Journal of Central South University》 SCIE EI CAS 2010年第2期316-322,共7页
A new kind of volume control hydraulic press that combines the advantages of both hydraulic and SRM(switched reluctance motor) driving technology is developed.Considering that the serious dead zone and time-variant no... A new kind of volume control hydraulic press that combines the advantages of both hydraulic and SRM(switched reluctance motor) driving technology is developed.Considering that the serious dead zone and time-variant nonlinearity exist in the volume control electro-hydraulic servo system,the ILC(iterative learning control) method is applied to tracking the displacement curve of the hydraulic press slider.In order to improve the convergence speed and precision of ILC,a fuzzy ILC algorithm that utilizes the fuzzy strategy to adaptively adjust the iterative learning gains is put forward.The simulation and experimental researches are carried out to investigate the convergence speed and precision of the fuzzy ILC for hydraulic press slider position tracking.The results show that the fuzzy ILC can raise the iterative learning speed enormously,and realize the tracking control of slider displacement curve with rapid response speed and high control precision.In experiment,the maximum tracking error 0.02 V is achieved through 12 iterations only. 展开更多
关键词 hydraulic press volume control electro-hydraulic servo iterative learning control fuzzy control
在线阅读 下载PDF
PD-type iterative learning control for nonlinear time-delay system with external disturbance 被引量:12
3
作者 Zhang Baolin Tang Gongyou Zheng Shi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第3期600-605,共6页
The PD-type iterative learning control design of a class of affine nonlinear time-delay systems with external disturbances is considered. Sufficient conditions guaranteeing the convergence of the n-norm of the trackin... The PD-type iterative learning control design of a class of affine nonlinear time-delay systems with external disturbances is considered. Sufficient conditions guaranteeing the convergence of the n-norm of the tracking error are derived. It is shown that the system outputs can be guaranteed to converge to desired trajectories in the absence of external disturbances and output measurement noises. And in the presence of state disturbances and measurement noises, the tracking error will be bounded uniformly. A numerical simulation example is presented to validate the effectiveness of the proposed scheme. 展开更多
关键词 time-delay system nonlinear system iterative learning control CONVERGENCE external disturbance.
在线阅读 下载PDF
Robust iterative learning control for nonlinear systems with measurement disturbances 被引量:6
4
作者 Xuhui BuI FashanYu +1 位作者 Zhongsheng Hou Haizhu Yang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第6期906-913,共8页
The iterative learning control (ILC) has been demon-strated to be capable of considerably improving the tracking perfor-mance of systems which are affected by the iteration-independent disturbance. However, the achi... The iterative learning control (ILC) has been demon-strated to be capable of considerably improving the tracking perfor-mance of systems which are affected by the iteration-independent disturbance. However, the achievable performance is greatly degraded when iteration-dependent, stochastic disturbances are pre-sented. This paper considers the robustness of the ILC algorithm for the nonlinear system in presence of stochastic measurement disturbances. The robust convergence of the P-type ILC algorithm is firstly addressed, and then an improved ILC algorithm with a decreasing gain is proposed. Theoretical analyses show that the proposed algorithm can guarantee that the tracking error of the nonlinear system tends to zero in presence of measurement dis-turbances. The analysis is also supported by a numerical example. 展开更多
关键词 iterative learning control (ILC) nonlinear system mea-surement disturbance iteration-varying disturbance.
在线阅读 下载PDF
Adaptive adjustment of iterative learning control gain matrix in harsh noise environment 被引量:3
5
作者 Bingqiang Li Hui Lin Hualing Xing 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第1期128-134,共7页
For the robustness problem of open-loop P-type iterative learning control under the influence of measurement noise which is inevitable in actual systems, an adaptive adjustment algorithm of iterative learning nonlinea... For the robustness problem of open-loop P-type iterative learning control under the influence of measurement noise which is inevitable in actual systems, an adaptive adjustment algorithm of iterative learning nonlinear gain matrix based on error amplitude is proposed and two nonlinear gain functions are given. Then with the help of Bellman-Gronwall lemma, the robustness proof is derived. At last, an example is simulated and analyzed. The results show that when there exists measurement noise, the proposed learning law adjusts the learning gain matrix on line based on error amplitude, thus can make a compromise between learning convergence rate and convergence accuracy to some extent: the fast convergence rate is achieved with high gain in initial learning stage, the strong robustness and high convergence accuracy are achieved at the same time with small gain in the end learning stage, thus better learning results are obtained. 展开更多
关键词 iterative learning control open-loop P-type learninglaw nonlinear gain measurement noise robustness.
在线阅读 下载PDF
Iterative learning based fault detection and estimation in nonlinear systems 被引量:2
6
作者 Wei Cao Wang Cong Ming Sun 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第3期419-424,共6页
Aiming at a class of nonlinear systems that contains faults, a novel iterative learning scheme is applied to fault detec- tion, and a novel algorithm of fault detection and estimation is proposed. This algorithm first... Aiming at a class of nonlinear systems that contains faults, a novel iterative learning scheme is applied to fault detec- tion, and a novel algorithm of fault detection and estimation is proposed. This algorithm first constructs residual signals by the output of the practical system and the output of the designed fault tracking estimator, and then uses the residuals and the difference- value signal of the adjacent two residuals to gradually revise the introduced virtual faults, which can cause the virtual faults to close to the practical faults in systems, thereby achieving the goal of fault detection for systems. This algorithm not only makes full use of the existing valid information of systems and has a faster tracking con- vergent speed than the proportional-type (P-type) algorithm, but also calculates more simply than the proportional-derivative-type (PD-type) algorithm and avoids the unstable effects of differential operations in the system. The final simulation results prove the validity of the proposed algorithm. 展开更多
关键词 iterative learning nonlinear system fault detection fault estimation.
在线阅读 下载PDF
Iterative learning based fault diagnosis for discrete linear uncertain systems 被引量:1
7
作者 Wei Cao Ming Sun 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第3期496-501,共6页
In order to detect and estimate faults in discrete lin-ear time-varying uncertain systems, the discrete iterative learning strategy is applied in fault diagnosis, and a novel fault detection and estimation algorithm i... In order to detect and estimate faults in discrete lin-ear time-varying uncertain systems, the discrete iterative learning strategy is applied in fault diagnosis, and a novel fault detection and estimation algorithm is proposed. And the threshold limited technology is adopted in the proposed algorithm. Within the chosen optimal time region, residual signals are used in the proposed algorithm to correct the introduced virtual faults with iterative learning rules, making the virtual faults close to these occurred in practical systems. And the same method is repeated in the rest optimal time regions, thereby reaching the aim of fault diagnosis. The proposed algorithm not only completes fault detection and estimation for discrete linear time-varying uncertain systems, but also improves the reliability of fault detection and decreases the false alarm rate. The final simulation results verify the validity of the proposed algorithm. 展开更多
关键词 discrete linear uncertain system threshold limited technology iterative learning fault estimation.
在线阅读 下载PDF
Composite iterative learning controller design for gradually varying references with applications in an AFM system
8
作者 方勇纯 张玉东 董晓坤 《Journal of Central South University》 SCIE EI CAS 2014年第1期180-189,共10页
Learning control for gradually varying references in iteration domain was considered in this research, and a composite iterative learning control strategy was proposed to enable a plant to track unknown iteration-depe... Learning control for gradually varying references in iteration domain was considered in this research, and a composite iterative learning control strategy was proposed to enable a plant to track unknown iteration-dependent trajectories. Specifically, by decoupling the current reference into the desired trajectory of the last trial and a disturbance signal with small magnitude, the learning and feedback parts were designed respectively to ensure fine tracking performance. After some theoretical analysis, the judging condition on whether the composite iterative learning control approach achieves better control results than pure feedback contro! was obtained for varying references. The convergence property of the closed-loop system was rigorously studied and the saturation problem was also addressed in the controller. The designed composite iterative learning control strategy is successfully employed in an atomic force microscope system, with both simulation and experimental results clearly demonstrating its superior performance. 展开更多
关键词 iterative learning control SATURATION feedback control feedforward control atomic force microscope
在线阅读 下载PDF
Robust Iterative Learning Controller for the Non-zero Initial Error Problem on Robot Manipulator
9
作者 TAO Li-li 1,YANG Fu-wen 2 (1. Department of Automation, University of Xiamen, Xiamen 361005, Chi na 2. Department of Electrical Engineering, University of Fuzhou, Fuzhou 350002, C hina) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期-,共2页
Industrial robot system is a kind of dynamic system w ith strong nonlinear coupling and high position precision. A lot of control ways , such as nonlinear feedbackdecomposition motion and adaptive control and so o n, ... Industrial robot system is a kind of dynamic system w ith strong nonlinear coupling and high position precision. A lot of control ways , such as nonlinear feedbackdecomposition motion and adaptive control and so o n, have been used to control this kind of system, but there are some deficiencie s in those methods: some need accurate and some need complicated operation and e tc. In recent years, in need of controlling the industrial robots, aiming at com pletely tracking the ideal input for the controlled subject with repetitive character, a new research area, ILC (iterative learning control), has been devel oped in the control technology and theory. The iterative learning control method can make the controlled subject operate as desired in a definite time span, merely making use of the prior control experie nce of the system and searching for the desired control signal according to the practical and desired output signal. The process of searching is equal to that o f learning, during which we only need to measure the output signal to amend the control signal, not like the adaptive control strategy, which on line assesses t he complex parameters of the system. Besides, since the iterative learning contr ol relies little on the prior message of the subject, it has been well used in a lot of areas, especially the dynamic systems with strong non-linear coupling a nd high repetitive position precision and the control system with batch producti on. Since robot manipulator has the above-mentioned character, ILC can be very well used in robot manipulator. In the ILC, since the operation always begins with a certain initial state, init ial condition has been required in almost all convergence verification. Therefor e, in designing the controller, the initial state has to be restricted with some condition to guarantee the convergence of the algorithm. The settle of initial condition problem has long been pursued in the ILC. There are commonly two kinds of initial condition problems: one is zero initial error problem, another is non-zero initial error problem. In practice, the repe titive operation will invariably produce excursion of the iterative initial stat e from the desired initial state. As a result, the research on the second in itial problem has more practical meaning. In this paper, for the non-zero initial error problem, one novel robust ILC alg orithms, respectively combining PD type iterative learning control algorithm wit h the robust feedback control algorithm, has been presented. This novel robust ILC algorithm contain two parts: feedforward ILC algorithm and robust feedback algorithm, which can be used to restrain disturbance from param eter variation, mechanical nonlinearities and unmodeled dynamics and to achieve good performance as well. The feedforward ILC algorithm can be used to improve the tracking error and perf ormance of the system through iteratively learning from the previous operation, thus performing the tracking task very fast. The robust feedback algorithm could mainly be applied to make the real output of the system not deviate too much fr om the desired tracking trajectory, and guarantee the system’s robustness w hen there are exterior noises and variations of the system parameter. In this paper, in order to analyze the convergence of the algorithm, Lyapunov st ability theory has been used through properly selecting the Lyapunov function. T he result of the verification shows the feasibility of the novel robust iterativ e learning control in theory. Finally, aiming at the two-freedom rate robot, simulation has been made with th e MATLAB software. Furthermore, two groups of parameters are selected to validat e the robustness of the algorithm. 展开更多
关键词 robust control iterative learning control non- zero initial error robot manipulator
在线阅读 下载PDF
Open-loop and closed-loop D^(α)-type iterative learning control for fractional-order linear multi-agent systems with state-delays
10
作者 LI Bingqiang LAN Tianyi +1 位作者 ZHAO Yiyun LYU Shuaishuai 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第1期197-208,共12页
This study focuses on implementing consensus tracking using both open-loop and closed-loop Dα-type iterative learning control(ILC)schemes,for fractional-order multi-agent systems(FOMASs)with state-delays.The desired ... This study focuses on implementing consensus tracking using both open-loop and closed-loop Dα-type iterative learning control(ILC)schemes,for fractional-order multi-agent systems(FOMASs)with state-delays.The desired trajectory is constructed by introducing a virtual leader,and the fixed communication topology is considered and only a subset of followers can access the desired trajectory.For each control scheme,one controller is designed for one agent individually.According to the tracking error between the agent and the virtual leader,and the tracking errors between the agent and neighboring agents during the last iteration(for open-loop scheme)or the current running(for closed-loop scheme),each controller continuously corrects the last control law by a combination of communication weights in the topology to obtain the ideal control law.Through the rigorous analysis,sufficient conditions for both control schemes are established to ensure that all agents can achieve the asymptotically consistent output along the iteration axis within a finite-time interval.Sufficient numerical simulation results demonstrate the effectiveness of the control schemes,and provide some meaningful comparison results. 展开更多
关键词 multi-agent system FRACTIONAL-ORDER consensus control iterative learning control virtual leader STATE-DELAY
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部