Applying spent lithium iron phosphate battery as raw material,valuable metals in spent lithium ion battery were effectively recovered through separation of active material,selective leaching,and stepwise chemical prec...Applying spent lithium iron phosphate battery as raw material,valuable metals in spent lithium ion battery were effectively recovered through separation of active material,selective leaching,and stepwise chemical precipitation.Using stoichiometric Na2S2O8 as an oxidant and adding low-concentration H2SO4 as a leaching agent was proposed.This route was totally different from the conventional methods of dissolving all of the elements into solution by using excess mineral acid.When experiments were done under optimal conditions(Na2S2O8-to-Li molar ratio 0.45,0.30 mol/L H2SO4,60℃,1.5 h),leaching efficiencies of 97.53% for Li^+,1.39%for Fe^3+,and 2.58% for PO4^3−were recorded.FePO4 was then recovered by a precipitation method from the leachate while maintaining the pH at 2.0.The mother liquor was concentrated and maintained at a temperature of approximately 100℃,and then a saturated sodium carbonate solution was added to precipitate Li2CO3.The lithium recovery yield was close to 80%.展开更多
盐湖卤水萃取法提锂的工艺中,磷酸三丁酯-FeCl_(3)-煤油协萃体系在多次循环使用后萃取能力会下降甚至失效。将失效锂萃取剂中的Fe(Ⅲ)回收利用对盐湖提锂行业的持续发展具有重要意义。在高浓度盐酸体系中模拟失效锂萃取剂,以其中的Fe(Ⅲ...盐湖卤水萃取法提锂的工艺中,磷酸三丁酯-FeCl_(3)-煤油协萃体系在多次循环使用后萃取能力会下降甚至失效。将失效锂萃取剂中的Fe(Ⅲ)回收利用对盐湖提锂行业的持续发展具有重要意义。在高浓度盐酸体系中模拟失效锂萃取剂,以其中的Fe(Ⅲ)为铁源,NH_(4)H_(2)PO_(4)溶液为磷源,在非均相体系中制备电池级磷酸铁。研究了反应时间、氨水加入量、NH_(4)H_(2)PO_(4)溶液浓度、反应温度和搅拌速率对产品产率、粒径(D_(50))和铁磷物质的量比的影响。结果表明,在优化的工艺条件下,可制得高纯度的单斜晶系二水磷酸铁,产率为89.43%、铁磷物质的量比为0.98、D_(50)为1.81μm、比表面积为37.38 m^(2)/g、含水量为19.64%,符合电池级磷酸铁的行业标准。以自制的磷酸铁为前驱体制备的Li Fe PO_(4)/C性能良好,在0.1C倍率下的首次放电比容量为146.58 m A·h/g,首次充放电效率为94.90%,恒流充放电循环80圈后的容量保持率为91.72%。研究表明,采用NH_(4)H_(2)PO_(4)溶液反萃沉淀法可有效回收失效锂萃取剂中的Fe(Ⅲ)并制备出电池级磷酸铁。展开更多
基金Project(Z20160605230001)supported by Hunan Province Non-ferrous Fund Project,China。
文摘Applying spent lithium iron phosphate battery as raw material,valuable metals in spent lithium ion battery were effectively recovered through separation of active material,selective leaching,and stepwise chemical precipitation.Using stoichiometric Na2S2O8 as an oxidant and adding low-concentration H2SO4 as a leaching agent was proposed.This route was totally different from the conventional methods of dissolving all of the elements into solution by using excess mineral acid.When experiments were done under optimal conditions(Na2S2O8-to-Li molar ratio 0.45,0.30 mol/L H2SO4,60℃,1.5 h),leaching efficiencies of 97.53% for Li^+,1.39%for Fe^3+,and 2.58% for PO4^3−were recorded.FePO4 was then recovered by a precipitation method from the leachate while maintaining the pH at 2.0.The mother liquor was concentrated and maintained at a temperature of approximately 100℃,and then a saturated sodium carbonate solution was added to precipitate Li2CO3.The lithium recovery yield was close to 80%.
文摘盐湖卤水萃取法提锂的工艺中,磷酸三丁酯-FeCl_(3)-煤油协萃体系在多次循环使用后萃取能力会下降甚至失效。将失效锂萃取剂中的Fe(Ⅲ)回收利用对盐湖提锂行业的持续发展具有重要意义。在高浓度盐酸体系中模拟失效锂萃取剂,以其中的Fe(Ⅲ)为铁源,NH_(4)H_(2)PO_(4)溶液为磷源,在非均相体系中制备电池级磷酸铁。研究了反应时间、氨水加入量、NH_(4)H_(2)PO_(4)溶液浓度、反应温度和搅拌速率对产品产率、粒径(D_(50))和铁磷物质的量比的影响。结果表明,在优化的工艺条件下,可制得高纯度的单斜晶系二水磷酸铁,产率为89.43%、铁磷物质的量比为0.98、D_(50)为1.81μm、比表面积为37.38 m^(2)/g、含水量为19.64%,符合电池级磷酸铁的行业标准。以自制的磷酸铁为前驱体制备的Li Fe PO_(4)/C性能良好,在0.1C倍率下的首次放电比容量为146.58 m A·h/g,首次充放电效率为94.90%,恒流充放电循环80圈后的容量保持率为91.72%。研究表明,采用NH_(4)H_(2)PO_(4)溶液反萃沉淀法可有效回收失效锂萃取剂中的Fe(Ⅲ)并制备出电池级磷酸铁。