Iron sulfide minerals are widely distributed, of which characteristics had the identification significance of formation environment. Previously, there were more research on iron sulfide minerals under hydrothermal con...Iron sulfide minerals are widely distributed, of which characteristics had the identification significance of formation environment. Previously, there were more research on iron sulfide minerals under hydrothermal condition, and few studies under volcanism formation condition. To simulate volcanic mineralization, the study of different temperature from 250 to 410℃ , different iron sulfur ratio from Fe:S=2∶1 to 1∶8, and two different sources of iron, reduced iron powder (Fe) and ferrous sulfide (FeS), on iron sulfide mineral evolution was investigated under thermal sulfurization condition. By using scanning electron microscopy (SEM), X-ray diffraction (XRD) and other methods, the morphology, composition and structural characteristics of the products were observed and analyzed.展开更多
The Lunggar iron deposit belongs to the Bangong-Nujiang metallogenic belt and is located in central Lhasa on the Tibetan Plateau.In the Lunggar deposit,iron mineralization formed in the skarnization contact zone betwe...The Lunggar iron deposit belongs to the Bangong-Nujiang metallogenic belt and is located in central Lhasa on the Tibetan Plateau.In the Lunggar deposit,iron mineralization formed in the skarnization contact zone between the Early Cretaceous granodiorite and the late Permian Xiala Formation limestone.In this study,we achieved detailed zircon U-Pb-Hf isotopes and mineral chemistry for the Early Cretaceous granodiorite.Zircon U-Pb dating results indicate that the Early Cretaceous granodiorite emplaced at ca.119 Ma.Based on the trace elements in zircons and the mineral chemical composition of amphibole and biotite,the Early Cretaceous granodiorite was believed to form under condition of high temperature(>700°C),low pressure(100400 MPa),and relatively high oxygen fugacity(lgfO2)(13.6 to 13.9)and H2O content(4%8%).Zircon trace elements,Hf isotope and biotite chemistry collectively reveal that significant juvenile mantle-derived magmas contributed to the source of the granodiorite.The relatively high logfO2 and shallow magma chamber are beneficial for skarn iron mineralization,implying remarkable potential for further prospecting in the Lunggar iron deposit.展开更多
The Lala Cu deposit in Sichuan Province is one of the most important large deposits in SW China,both in terms of Cu and associated Au-Mo-Co-REE-Fe. Systematic ore petrology study shows that ore minerals are mainly com...The Lala Cu deposit in Sichuan Province is one of the most important large deposits in SW China,both in terms of Cu and associated Au-Mo-Co-REE-Fe. Systematic ore petrology study shows that ore minerals are mainly composed of hydrothermal magnetite,chalcopyrite and molybdenite.The wall-rock alterations include biotitization,silicification, carbonatation,albitization,potash feldspathization, apatitation,actinolitation and fluoritation,et al. The Pyrite and magnetite have euhedral-subhedral crystalline grained texture and the chalcopyrite展开更多
This study developed a direct reduction route to smelt refractory high-phosphorus iron ores by using hydrogen rich gas.The effects of temperature,gas composition,and gangue on the reduction behavior of iron ore pellet...This study developed a direct reduction route to smelt refractory high-phosphorus iron ores by using hydrogen rich gas.The effects of temperature,gas composition,and gangue on the reduction behavior of iron ore pellets were investigated.Additionally,the migration behavior of phosphorus throughout the reduction-smelting process was examined.The apparent activation energy of the reduction process increased from 64.2 to 194.2 kJ/mol.Increasing the basicity from 0.5 to 0.9 increased the metallization rate from 85.9%to 89.2%.During the reduction process,phosphorus remained in the gangue phase.Carbon deposition and phosphorus removal behaviors of the pellets were investigated and correlated with the gas composition,temperature,pressure,metallization rate,and basicity.Increasing the FeO and CaO contents led to an increase in the liquidus temperature.A high metallization rate of the pellets reduced the phosphorus removal rate but increased the carbon content of the final iron product.Increasing basicity restricted the migration of phosphorus and improved the rate of phosphorus removal.The optimum dephosphorization parameters were separation temperature of 1823 K,basicity of 2.0,and metallization rate of 82.3%.This study presents a high-efficiency and low carbon method for smelting high-phosphorus iron ores.展开更多
基金Supported by National Natural Science Foundation (Grant No.:40872045 41172047)The Opening Project of Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education (12zxgk01)
文摘Iron sulfide minerals are widely distributed, of which characteristics had the identification significance of formation environment. Previously, there were more research on iron sulfide minerals under hydrothermal condition, and few studies under volcanism formation condition. To simulate volcanic mineralization, the study of different temperature from 250 to 410℃ , different iron sulfur ratio from Fe:S=2∶1 to 1∶8, and two different sources of iron, reduced iron powder (Fe) and ferrous sulfide (FeS), on iron sulfide mineral evolution was investigated under thermal sulfurization condition. By using scanning electron microscopy (SEM), X-ray diffraction (XRD) and other methods, the morphology, composition and structural characteristics of the products were observed and analyzed.
基金Project(2018YSJS14)supported by the Open Research Fund Program of Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring(Central South University),Ministry of Education,China
文摘The Lunggar iron deposit belongs to the Bangong-Nujiang metallogenic belt and is located in central Lhasa on the Tibetan Plateau.In the Lunggar deposit,iron mineralization formed in the skarnization contact zone between the Early Cretaceous granodiorite and the late Permian Xiala Formation limestone.In this study,we achieved detailed zircon U-Pb-Hf isotopes and mineral chemistry for the Early Cretaceous granodiorite.Zircon U-Pb dating results indicate that the Early Cretaceous granodiorite emplaced at ca.119 Ma.Based on the trace elements in zircons and the mineral chemical composition of amphibole and biotite,the Early Cretaceous granodiorite was believed to form under condition of high temperature(>700°C),low pressure(100400 MPa),and relatively high oxygen fugacity(lgfO2)(13.6 to 13.9)and H2O content(4%8%).Zircon trace elements,Hf isotope and biotite chemistry collectively reveal that significant juvenile mantle-derived magmas contributed to the source of the granodiorite.The relatively high logfO2 and shallow magma chamber are beneficial for skarn iron mineralization,implying remarkable potential for further prospecting in the Lunggar iron deposit.
文摘The Lala Cu deposit in Sichuan Province is one of the most important large deposits in SW China,both in terms of Cu and associated Au-Mo-Co-REE-Fe. Systematic ore petrology study shows that ore minerals are mainly composed of hydrothermal magnetite,chalcopyrite and molybdenite.The wall-rock alterations include biotitization,silicification, carbonatation,albitization,potash feldspathization, apatitation,actinolitation and fluoritation,et al. The Pyrite and magnetite have euhedral-subhedral crystalline grained texture and the chalcopyrite
基金Project(U1960205)supported by the National Natural Science Foundation of ChinaProject(2020ZXA01)supported by China Minmetals Science and Technology Special Plan Foundation。
文摘This study developed a direct reduction route to smelt refractory high-phosphorus iron ores by using hydrogen rich gas.The effects of temperature,gas composition,and gangue on the reduction behavior of iron ore pellets were investigated.Additionally,the migration behavior of phosphorus throughout the reduction-smelting process was examined.The apparent activation energy of the reduction process increased from 64.2 to 194.2 kJ/mol.Increasing the basicity from 0.5 to 0.9 increased the metallization rate from 85.9%to 89.2%.During the reduction process,phosphorus remained in the gangue phase.Carbon deposition and phosphorus removal behaviors of the pellets were investigated and correlated with the gas composition,temperature,pressure,metallization rate,and basicity.Increasing the FeO and CaO contents led to an increase in the liquidus temperature.A high metallization rate of the pellets reduced the phosphorus removal rate but increased the carbon content of the final iron product.Increasing basicity restricted the migration of phosphorus and improved the rate of phosphorus removal.The optimum dephosphorization parameters were separation temperature of 1823 K,basicity of 2.0,and metallization rate of 82.3%.This study presents a high-efficiency and low carbon method for smelting high-phosphorus iron ores.