由于水下环境的多样性和光在水中受到的散射及选择性吸收作用,采集到的水下图像通常会产生严重的质量退化问题,如颜色偏差、清晰度低和亮度低等,为解决以上问题,本文提出了一种基于Transformer和生成对抗网络的水下图像增强算法。以生...由于水下环境的多样性和光在水中受到的散射及选择性吸收作用,采集到的水下图像通常会产生严重的质量退化问题,如颜色偏差、清晰度低和亮度低等,为解决以上问题,本文提出了一种基于Transformer和生成对抗网络的水下图像增强算法。以生成对抗网络为基础架构,结合编码解码结构、基于空间自注意力机制的全局特征建模Transformer模块和通道级多尺度特征融合Transformer模块构建了TGAN(generative adversarial network with transformer)网络增强模型,重点关注水下图像衰减更严重的颜色通道和空间区域,有效增强了图像细节并解决了颜色偏差问题。此外,设计了一种结合RGB和LAB颜色空间的多项损失函数,约束网络增强模型的对抗训练。实验结果表明,与CLAHE(contrast limited adaptive histogram equalization)、UDCP(underwater dark channel prior)、UWCNN(underwater based on convolutional neural network)、FUnIE-GAN(fast underwater image enhancement for improved visual perception)等典型水下图像增强算法相比,所提算法增强后的水下图像在清晰度、细节纹理和色彩表现等方面都有所提升,客观评价指标如峰值信噪比、结构相似性和水下图像质量度量的平均值分别提升了5.8%、1.8%和3.6%,有效地提升了水下图像的视觉感知效果。展开更多
针对分布式光纤声传感系统信号信噪比过低的问题,提出一种基于时域局部广义最大互相关熵(TLGMCC)准则联合自适应噪声完备集合经验模态分解(CEEMDAN)与提升小波变换(LWT)的优化降噪方法。首先,使用自适应噪声完备CEEMDAN对原始信号进行分...针对分布式光纤声传感系统信号信噪比过低的问题,提出一种基于时域局部广义最大互相关熵(TLGMCC)准则联合自适应噪声完备集合经验模态分解(CEEMDAN)与提升小波变换(LWT)的优化降噪方法。首先,使用自适应噪声完备CEEMDAN对原始信号进行分解,获取模态分量。接着,将原始信号与这些模态分量分割为多个时间局部片段,并计算它们对应时间局部片段的相关熵值。然后,通过LWT算法处理弱相关分量,最后重构剩余分量以完成去噪过程。实验结果表明:在5 km的传感距离和10 m的空间分辨率的条件下,系统的信噪比达到了54.36 d B,同时均方根误差降低至0.091。展开更多
文摘由于水下环境的多样性和光在水中受到的散射及选择性吸收作用,采集到的水下图像通常会产生严重的质量退化问题,如颜色偏差、清晰度低和亮度低等,为解决以上问题,本文提出了一种基于Transformer和生成对抗网络的水下图像增强算法。以生成对抗网络为基础架构,结合编码解码结构、基于空间自注意力机制的全局特征建模Transformer模块和通道级多尺度特征融合Transformer模块构建了TGAN(generative adversarial network with transformer)网络增强模型,重点关注水下图像衰减更严重的颜色通道和空间区域,有效增强了图像细节并解决了颜色偏差问题。此外,设计了一种结合RGB和LAB颜色空间的多项损失函数,约束网络增强模型的对抗训练。实验结果表明,与CLAHE(contrast limited adaptive histogram equalization)、UDCP(underwater dark channel prior)、UWCNN(underwater based on convolutional neural network)、FUnIE-GAN(fast underwater image enhancement for improved visual perception)等典型水下图像增强算法相比,所提算法增强后的水下图像在清晰度、细节纹理和色彩表现等方面都有所提升,客观评价指标如峰值信噪比、结构相似性和水下图像质量度量的平均值分别提升了5.8%、1.8%和3.6%,有效地提升了水下图像的视觉感知效果。
文摘针对分布式光纤声传感系统信号信噪比过低的问题,提出一种基于时域局部广义最大互相关熵(TLGMCC)准则联合自适应噪声完备集合经验模态分解(CEEMDAN)与提升小波变换(LWT)的优化降噪方法。首先,使用自适应噪声完备CEEMDAN对原始信号进行分解,获取模态分量。接着,将原始信号与这些模态分量分割为多个时间局部片段,并计算它们对应时间局部片段的相关熵值。然后,通过LWT算法处理弱相关分量,最后重构剩余分量以完成去噪过程。实验结果表明:在5 km的传感距离和10 m的空间分辨率的条件下,系统的信噪比达到了54.36 d B,同时均方根误差降低至0.091。