An effective maintenance policy optimization model can reduce maintenance cost and system operation risk. For mission-oriented systems, the degradation process changes dynamically and is monotonous and irreversible. M...An effective maintenance policy optimization model can reduce maintenance cost and system operation risk. For mission-oriented systems, the degradation process changes dynamically and is monotonous and irreversible. Meanwhile, the risk of early failure is high. Therefore, this paper proposes a dynamic condition-based maintenance(CBM) optimization model for mission-oriented system based on inverse Gaussian(IG) degradation process. Firstly, the IG process with random drift coefficient is used to describe the degradation process and the relevant probability distributions are obtained. Secondly, the dynamic preventive maintenance threshold(DPMT) function is used to control the early failure risk of the mission-oriented system, and the influence of imperfect preventive maintenance(PM)on the degradation amount and degradation rate is analysed comprehensively. Thirdly, according to the mission availability requirement, the probability formulas of different types of renewal policies are obtained, and the CBM optimization model is constructed. Finally, a numerical example is presented to verify the proposed model. The comparison with the fixed PM threshold model and the sensitivity analysis show the effectiveness and application value of the optimization model.展开更多
Fiber optical gyroscope(FOG)is a highly reliable navigation element,and the degradation trajectories of its two accuracy indexes are monotonic and non-monotonic respectively.In this paper,a flexible accelerated degrad...Fiber optical gyroscope(FOG)is a highly reliable navigation element,and the degradation trajectories of its two accuracy indexes are monotonic and non-monotonic respectively.In this paper,a flexible accelerated degradation testing(ADT)model is used for analyzing the bivariate dependent degradation process of FOG.The time-varying copulas are employed to consider the dynamic dependency structure between two marginal degradation processes as the Wiener process and the inverse Gaussian process.The statistical inference is implemented by utilizing an inference function for the margins(IFM)approach.It is demonstrated that the proposed method is powerful in modeling the joint distribution with various margins.展开更多
基金supported by the National Natural Science Foundation of China (71901216)。
文摘An effective maintenance policy optimization model can reduce maintenance cost and system operation risk. For mission-oriented systems, the degradation process changes dynamically and is monotonous and irreversible. Meanwhile, the risk of early failure is high. Therefore, this paper proposes a dynamic condition-based maintenance(CBM) optimization model for mission-oriented system based on inverse Gaussian(IG) degradation process. Firstly, the IG process with random drift coefficient is used to describe the degradation process and the relevant probability distributions are obtained. Secondly, the dynamic preventive maintenance threshold(DPMT) function is used to control the early failure risk of the mission-oriented system, and the influence of imperfect preventive maintenance(PM)on the degradation amount and degradation rate is analysed comprehensively. Thirdly, according to the mission availability requirement, the probability formulas of different types of renewal policies are obtained, and the CBM optimization model is constructed. Finally, a numerical example is presented to verify the proposed model. The comparison with the fixed PM threshold model and the sensitivity analysis show the effectiveness and application value of the optimization model.
基金supported by the National Key R&D Program of China(2018YFB0104504).
文摘Fiber optical gyroscope(FOG)is a highly reliable navigation element,and the degradation trajectories of its two accuracy indexes are monotonic and non-monotonic respectively.In this paper,a flexible accelerated degradation testing(ADT)model is used for analyzing the bivariate dependent degradation process of FOG.The time-varying copulas are employed to consider the dynamic dependency structure between two marginal degradation processes as the Wiener process and the inverse Gaussian process.The statistical inference is implemented by utilizing an inference function for the margins(IFM)approach.It is demonstrated that the proposed method is powerful in modeling the joint distribution with various margins.