期刊文献+
共找到180篇文章
< 1 2 9 >
每页显示 20 50 100
基于TVFEMD-IMF能量熵增量的桥梁监测数据降噪方法 被引量:4
1
作者 李双江 辛景舟 +3 位作者 蒋黎明 刘水康 巴建明 周建庭 《振动.测试与诊断》 EI CSCD 北大核心 2024年第1期178-185,206,共9页
针对桥梁监测数据受多重噪声干扰、影响结构真实响应获取的问题,提出了一种基于时变滤波经验模态分解(time-varying filtering empirical mode decomposition,简称TVFEMD)和本征模函数(intrinsic mode function,简称IMF)能量熵增量的桥... 针对桥梁监测数据受多重噪声干扰、影响结构真实响应获取的问题,提出了一种基于时变滤波经验模态分解(time-varying filtering empirical mode decomposition,简称TVFEMD)和本征模函数(intrinsic mode function,简称IMF)能量熵增量的桥梁监测数据降噪方法。首先,利用TVFEMD分解桥梁原始监测数据,得到多个子序列;其次,采用IMF能量熵增量确定多个子序列中的有效子序列;然后,划分子序列中的结构响应分量和噪声分量,对结构响应分量重组实现监测数据降噪;最后,利用平均绝对误差(mean absolute error,简称MAE)、均方根误差(root mean squared error,简称RMSE)和信噪比(signal-noise ratio,简称SNR)对不同方法的降噪效果进行评价。仿真算例和工程实例结果表明:TVFEMD相比经验模态分解(empirical mode decomposition,简称EMD),有效解决了模态混叠问题;TVFEMD结合IMF能量熵增量方法,有效抑制了多重噪声影响,对结果精度有较大提升;与EMD-IMF能量熵增量和Kalman滤波降噪法相比,TVFEMD-IMF能量熵增量法所得到降噪信号的MAE和RMSE值分别提升了23%和21%以上,降噪效果更好,信噪比提升38%以上,抗噪性能更佳。 展开更多
关键词 桥梁 健康监测 降噪 时变滤波经验模态分解 本征模函数能量熵增量
在线阅读 下载PDF
GIS不同耦合方式下注入脉冲的加权IMF局放信号等效性
2
作者 董冰冰 李康 +3 位作者 高常胜 刘贯科 戴喜良 夏云峰 《电力工程技术》 北大核心 2024年第4期95-103,共9页
注入脉冲模拟局放是气体绝缘金属封闭组合电器(gas insulated switchgear,GIS)特高频(ultra high frequency,UHF)局放监测装置功能校验的主要方法,由于现场校验脉冲注入的耦合方式不同,模拟局放与实际局放等效性规律尚不明确,无法保证... 注入脉冲模拟局放是气体绝缘金属封闭组合电器(gas insulated switchgear,GIS)特高频(ultra high frequency,UHF)局放监测装置功能校验的主要方法,由于现场校验脉冲注入的耦合方式不同,模拟局放与实际局放等效性规律尚不明确,无法保证监测装置功能校验的有效性。文中首先建立126 kV GIS典型局放缺陷(尖端、悬浮、绝缘子气泡)和内/外置式脉冲注入UHF局放检测平台,并对UHF信号有效脉冲进行归一化提取;接着提出基于经验模态分解的加权本征模函数(intrinsic mode functions,IMF)信号处理方法,通过计算局放信号欧式距离平均值和最大值表征其等效性;最后与常规信号偏差法进行对比验证。研究表明,相较于常规信号等效性分析方法,加权IMF法可有效解决UHF信号波形局部差异较大的问题;使用内置传感器脉冲注入的模拟局放信号与悬浮局放信号等效性最高,局放信号的欧式距离平均值M_(e)和最大值M_(a)分别为3.82%和10.28%。因此,UHF监测装置功能校验可采用恒定参数注入脉冲代替悬浮缺陷,且模拟局放可优先选择内置UHF传感器注入脉冲。文中研究可为UHF局放监测装置功能校验的脉冲注入方法提供参考。 展开更多
关键词 注入脉冲 局放模拟 经验模态分解 信号等效性分析 本征模函数(imf) 欧式距离
在线阅读 下载PDF
基于柴油机曲轴瞬时转速信号EEMD分解的失火故障诊断 被引量:1
3
作者 黄英 李准 +2 位作者 王健 刘辰 胡博睿 《北京理工大学学报》 北大核心 2025年第4期384-390,共7页
对于十缸V型柴油机单缸失火和双缸失火这两类故障,提出了基于曲轴瞬时转速信号的集合经验模态分解的故障诊断策略.该策略考虑到多个转速工况对失火故障诊断的影响,根据柴油机喷油提前角将实车实时采集到该转速下的数据划分为正常、单缸... 对于十缸V型柴油机单缸失火和双缸失火这两类故障,提出了基于曲轴瞬时转速信号的集合经验模态分解的故障诊断策略.该策略考虑到多个转速工况对失火故障诊断的影响,根据柴油机喷油提前角将实车实时采集到该转速下的数据划分为正常、单缸失火和双缸失火这三个工况区间.通过多循环平均方法对三个工况区间数据进行预处理,并通过集合经验模态分解方法分解,该方法能自适应地将曲轴转速信号分解为若干个本征模态函数.通过集合经验模态分解得到每个本征模态函数幅值的异常波动,确定包含故障信息的本征模态函数,为了进一步提取特征,需对该本征模态函数进行快速傅里叶变换,根据主频分量的幅值,得到故障特征.最后在多个转速工况下进行上述诊断流程,得出各个转过速工况的诊断准确率,实现了诊断算法的转速工况敏感性分析.实验结果表明该方法能有效提取故障特征,实现了十缸柴油机基于多个瞬时转速的失火故障诊断. 展开更多
关键词 柴油机 失火故障诊断 集合经验模态分解(EEMD) 曲轴瞬时转速 特征提取 本征模态函数(imfs) 快速傅里叶变换(FFT)
在线阅读 下载PDF
基于CEEMDAN和频谱时间图卷积网络的电力负荷预测方法
4
作者 朱莉 夏禹 +1 位作者 朱春强 邓凡 《计算机工程》 北大核心 2025年第4期339-349,共11页
针对电力负荷数据存在非平稳性且传统预测模型不能精确获取时序负荷数据的空间相关性和时间依赖性,导致预测精度低的问题,设计并实现一种基于完全集成经验模式分解的自适应噪声完备性(CEEMDAN)和频谱图卷积网络的电力负荷预测方法。首... 针对电力负荷数据存在非平稳性且传统预测模型不能精确获取时序负荷数据的空间相关性和时间依赖性,导致预测精度低的问题,设计并实现一种基于完全集成经验模式分解的自适应噪声完备性(CEEMDAN)和频谱图卷积网络的电力负荷预测方法。首先使用CEEMDAN将目标负荷序列分解为多个本征模态分量(IMF),通过计算模糊熵对IMF进行重构;然后使用频谱时间图卷积网络对重构后分量的空间相关性和时间依赖性进行挖掘,得到各分量的预测结果;最后将各分量的预测结果线性相加得到最终预测结果。实验结果表明,所提方法的平均绝对误差、均方根误差、平均绝对百分比误差3个评价指标分别达到了0.72 KW、0.89 KW、0.92%,相较于对比模型StemGnn、TCN、LSTM、Informer、FEDformer,预测精度分别提高了37.9%、17.2%、20.8%、22.5%、12.1%。证明本文所提出的预测方法可以有效降低非平稳性对预测结果的影响,精确获取时序负荷数据的空间相关性和时间依赖性,提高预测精度。 展开更多
关键词 电力负荷预测 经验模态分解 本征模态分量 图卷积网络 模糊熵
在线阅读 下载PDF
基于IMF能量谱的水声信号特征提取与分类 被引量:18
5
作者 刘深 张小蓟 +1 位作者 牛奕龙 汪平平 《计算机工程与应用》 CSCD 2014年第3期203-206,226,共5页
经验模态分解(EMD)是用来处理非平稳时变信号的一种信号分析方法,该方法对所分析信号的局部特征信号进行不同时间尺度的分解,从而得到这些局部特征信号的各阶本征模函数(IMF)。提出了一种基于IMF能量谱的水声信号特征提取与选择方法,通... 经验模态分解(EMD)是用来处理非平稳时变信号的一种信号分析方法,该方法对所分析信号的局部特征信号进行不同时间尺度的分解,从而得到这些局部特征信号的各阶本征模函数(IMF)。提出了一种基于IMF能量谱的水声信号特征提取与选择方法,通过对水声信号进行经验模态分解,提取信号的本征模式分量并转换为能量谱特征向量,从而观测不同信号子频带能量谱的特征变化。分类实验采用支持向量机(SVM)分类器进行。实验结果表明,相对于小波能量谱特征提取法而言,利用IMF能量谱作为特征向量的分类实验具有更佳的分类效果,平均正确率达88%以上。 展开更多
关键词 经验模态分解 本征模函数 本征模函数能量谱 特征提取 支持向量机(SVM)分类器
在线阅读 下载PDF
基于IMF能量矩和神经网络的轴承故障诊断 被引量:35
6
作者 秦太龙 杨勇 +1 位作者 程珩 薛松 《振动.测试与诊断》 EI CSCD 2008年第3期229-232,共4页
针对滚动轴承故障振动信号的非平稳特征,提出了一种本征模函数(Intrinsic Mode Function,简称IMF)能量矩的特征向量提取法,并与BP神经网络相结合用于滚动轴承的故障诊断。该方法首先利用经验模态分解(Empirical Mode Decomposition,简称... 针对滚动轴承故障振动信号的非平稳特征,提出了一种本征模函数(Intrinsic Mode Function,简称IMF)能量矩的特征向量提取法,并与BP神经网络相结合用于滚动轴承的故障诊断。该方法首先利用经验模态分解(Empirical Mode Decomposition,简称EMD)方法,把振动信号分解为若干个IMF,再将重要的IMF分量作基于时间轴的积分,得到IMF能量矩特征向量,最后借助BP神经网络的分类能力对特征向量进行分类。对滚动轴承的正常状态、外圈故障、滚动体故障和外圈故障信号的分析结果表明,该方法能够准确、有效地识别这些故障。 展开更多
关键词 滚动轴承 本征模函数 能量矩 故障诊断 经验模态分解 BP神经网络
在线阅读 下载PDF
基于IMF能量熵的目标特征提取与分类方法 被引量:13
7
作者 张小蓟 张歆 孙进才 《计算机工程与应用》 CSCD 北大核心 2008年第4期68-69,共2页
提出了一种基于固有模态函数(IMF)能量熵的特征提取与选择方法。对三类信号进行了经验模态分解(EMD),得到IMF。对于不同类别的信号,同阶的IMF能量有明显的不同。选择IMF能量作为特征向量,并选判别熵作为分类判据,同时给出了两种能量熵... 提出了一种基于固有模态函数(IMF)能量熵的特征提取与选择方法。对三类信号进行了经验模态分解(EMD),得到IMF。对于不同类别的信号,同阶的IMF能量有明显的不同。选择IMF能量作为特征向量,并选判别熵作为分类判据,同时给出了两种能量熵的计算公式。采用K-近邻分类器对三类信号进行了分类试验,试验结果表明,基于最佳特征向量选择的分类试验的平均正确识别率达80%以上。 展开更多
关键词 经验模态分解 固有模态函数 特征提取 K-近邻分类
在线阅读 下载PDF
重力固体潮IMF的AM-FM模型及其非线性拟合 被引量:3
8
作者 吴庆畅 周挚 +2 位作者 梁虹 全海燕 王天理 《计算机工程与应用》 CSCD 北大核心 2009年第30期138-142,共5页
首先建立AM-FM数学模型,用多个相近载波的调幅信号组合描述它。利用最小二乘法对幅度调制和频率调制两个部分分别进行非线性拟合;拟合以相关系数满足一定条件为精度控制原则,拟合项数以相邻相关系数不再显著变化为判定条件。有效性检验... 首先建立AM-FM数学模型,用多个相近载波的调幅信号组合描述它。利用最小二乘法对幅度调制和频率调制两个部分分别进行非线性拟合;拟合以相关系数满足一定条件为精度控制原则,拟合项数以相邻相关系数不再显著变化为判定条件。有效性检验证明该方法切实可行。重力固体潮IMF的拟合结果表明,AM-FM数学模型可以很好地刻画重力固体潮IMF;重力固体潮是多个AM-FM信号合成的复合信号。为后续深入研究重力固体潮的AM-FM信号特征、循环平稳信号特征等性质建立了良好的数学基础。 展开更多
关键词 AM-FM模型 非线性最小二乘法 数据拟合 重力固体潮 本征模态函数(imf)
在线阅读 下载PDF
应用IMF分量包络矩阵的奇异值提取机械故障特征 被引量:2
9
作者 裘焱 吴亚锋 李野 《中国机械工程》 EI CAS CSCD 北大核心 2009年第22期2647-2649,共3页
将信号包络和矩阵奇异值引入到机械故障诊断中,提出采用IMF(intrinsic mode function)分量包络矩阵的奇异值分解方法提取机械故障特征的方法,该方法全面反映了机械内部损伤情况,计算简单、提取特征明显。仿真实验表明,应用IMF分量包络... 将信号包络和矩阵奇异值引入到机械故障诊断中,提出采用IMF(intrinsic mode function)分量包络矩阵的奇异值分解方法提取机械故障特征的方法,该方法全面反映了机械内部损伤情况,计算简单、提取特征明显。仿真实验表明,应用IMF分量包络矩阵的奇异值分解方法可有效、快速地提取机械故障特征参数,该方法在机械转子故障诊断中的应用结果较为满意。 展开更多
关键词 包络线 奇异值 故障特征 imf
在线阅读 下载PDF
基于IMF和粗糙度特征的发动机振动信号分析 被引量:2
10
作者 吴娅辉 李新良 +1 位作者 张大治 洪宝林 《机械科学与技术》 CSCD 北大核心 2012年第8期1315-1319,共5页
航空发动机振动信号为典型的非平稳信号,包含了多种振源振动信息和大量的噪声分量。通过对航空发动机振动信号进行Hilbert-Huang变换,将复杂信号分解为代表不同物理意义的单分量固有模态函数(intrinsic mode functions,IMF),然后对每一... 航空发动机振动信号为典型的非平稳信号,包含了多种振源振动信息和大量的噪声分量。通过对航空发动机振动信号进行Hilbert-Huang变换,将复杂信号分解为代表不同物理意义的单分量固有模态函数(intrinsic mode functions,IMF),然后对每一个IMF信号提取广义粗糙度特征实现对振动信号的描述。由于各IMF分量的能量百分比大小表征了该分量信号的有效性,使用提取的能量百分比对各分量下的广义粗糙度特征进行加权,最后得到了对发动机振动信号进行描述的能量加权广义粗糙度特征。通过对航空发动机实际试车采集的碰摩振动信号和正常工况下信号的实验分析可以看出,两种情况下信号特征具有明显不同,说明该特征可以有效地对振动信号进行描述。 展开更多
关键词 固有模态函数 广义粗糙度特征 能量 振动信号分析 航空发动机
在线阅读 下载PDF
思维作业脑电的IMF能量熵特征提取与分类研究 被引量:1
11
作者 李营 艾玲梅 马苗 《计算机工程与应用》 CSCD 北大核心 2009年第28期128-130,139,共4页
提出了一种基于固有模态函数(Intrinsic Mode Function,IMF)能量熵的特征提取方法。对三类脑电思维信号分别进行了经验模态分解(Empirical Mode Decomposition,EMD),并得到与其相对应的IMF。试验发现对于不同类别的信号,同阶的IMF能量... 提出了一种基于固有模态函数(Intrinsic Mode Function,IMF)能量熵的特征提取方法。对三类脑电思维信号分别进行了经验模态分解(Empirical Mode Decomposition,EMD),并得到与其相对应的IMF。试验发现对于不同类别的信号,同阶的IMF能量的判别熵有明显的不同。而采用K-近邻分类器对三类脑电信号进行了分类,发现基于最佳特征向量选择的分类试验的平均正确识别率达75%以上。 展开更多
关键词 固有模态函数 脑电信号 经验模态分解 特征提取 K-近邻分类器
在线阅读 下载PDF
基于SVD-SGWT和IMF能量熵增量的液压故障特征提取 被引量:3
12
作者 柴凯 张梅军 +1 位作者 黄杰 赵晶 《机械设计与制造》 北大核心 2015年第3期51-54,共4页
针对随机噪声和虚假分量影响总体平均经验模态分解(EEMD)分解质量问题,提出基于奇异值分解(SVD)和第二代小波变换(SGWT)联合降噪预处理和本征模态分量(IMF)能量熵增量剔除虚假分量的改进EEMD方法。该方法首先对原始信号进行第二代小波变... 针对随机噪声和虚假分量影响总体平均经验模态分解(EEMD)分解质量问题,提出基于奇异值分解(SVD)和第二代小波变换(SGWT)联合降噪预处理和本征模态分量(IMF)能量熵增量剔除虚假分量的改进EEMD方法。该方法首先对原始信号进行第二代小波变换,利用SVD对SGWT得到的高频系数进行降噪处理,克服了软、硬阈值法降噪的缺陷。然后对消噪处理的信号进行EEMD分解,通过IMF能量熵增量去除虚假分量;最后对主IMF分量进行Hilbert谱分析来提取信号的主要特征。仿真和实验结果表明,SVD和SGWT联合降噪故障信号信噪比显著提高,且失真度小,抑制了噪声对EEMD分解精度的干扰,能量熵增量能有效地去除虚假IMF,Hilbert谱中各频率成分清晰不混叠,成功提取了液压系统故障特征频率。 展开更多
关键词 奇异值分解 第二代小波变换 总体平均经验模态分解 固有模态函数 能量熵增量 故障特征提取
在线阅读 下载PDF
固有模态函数(IMF)积检测器——以低信噪比情况下超宽带雷达信号检测为例 被引量:1
13
作者 王明阳 周一宇 +1 位作者 姜文利 韩乐 《宇航学报》 EI CAS CSCD 北大核心 2006年第B12期75-78,共4页
首次提出了一种固有模态函数积检测器。首先通过经验模式分解(EMD)把带噪信号分解成有限个固有模态函数(IMF)。检测的基本思路是,对各个IMF分量的绝对值作逐点乘积,用于抑制噪声并凸现信号,最后进行滤波和判决。本文以UWB信号为... 首次提出了一种固有模态函数积检测器。首先通过经验模式分解(EMD)把带噪信号分解成有限个固有模态函数(IMF)。检测的基本思路是,对各个IMF分量的绝对值作逐点乘积,用于抑制噪声并凸现信号,最后进行滤波和判决。本文以UWB信号为例,数据源于UWB雷达实验系统。在低信噪比(SNR),UWB脉冲与噪声波形相似,且噪声概率密度函数(PDF)未知情况下,进行实验。结果表明,当峰峰信噪比低于5dB时,该检测器性能优于Teager能量算子(TEO)。 展开更多
关键词 经验模式分解 固有模态函数 TEAGER能量算子 超宽带雷达
在线阅读 下载PDF
基于IMF灵敏度分析的柴油机振动源影响规律
14
作者 杜宪峰 舒歌群 +2 位作者 卫海桥 梁兴雨 曹晓峰 《天津大学学报(自然科学与工程技术版)》 EI CSCD 北大核心 2015年第12期1098-1104,共7页
为了确定柴油机供油参数对振动源的影响,提出了振动信号IMF分量灵敏度分析方法.结合试验手段与信号处理技术,在IMF分量灵敏度理论分析的基础上建立了IMF分量灵敏度分析流程及计算模型,并采用该模型对模拟仿真信号与缸盖振动信号进行了... 为了确定柴油机供油参数对振动源的影响,提出了振动信号IMF分量灵敏度分析方法.结合试验手段与信号处理技术,在IMF分量灵敏度理论分析的基础上建立了IMF分量灵敏度分析流程及计算模型,并采用该模型对模拟仿真信号与缸盖振动信号进行了计算分析.分析结果表明,模拟仿真信号验证了IMF分量灵敏度计算分析的有效性,同时,IMF分量的灵敏度分析能够有效识别与供油压力密切相关的振动源,从而实现了供油压力的合理选择,为柴油机振动控制提供了参考依据. 展开更多
关键词 灵敏度分析 imf分量 振动信号 供油参数 柴油机
在线阅读 下载PDF
基于IMF熵价值的轮对轴承故障自适应诊断 被引量:5
15
作者 易彩 林建辉 +1 位作者 丁建明 张卫华 《铁道学报》 EI CAS CSCD 北大核心 2017年第10期43-50,共8页
针对集成经验模态分解(EEMD)方法中本征模态函数(IMF)不能自主筛选的问题,提出IMF价值评价方法,以此评价IMF价值高低。将IMF能量熵作为IMF价值高低的核心评价标准,并基于此建立轮对轴承故障自适应诊断模型。该模型将轴承振动信号进行EEM... 针对集成经验模态分解(EEMD)方法中本征模态函数(IMF)不能自主筛选的问题,提出IMF价值评价方法,以此评价IMF价值高低。将IMF能量熵作为IMF价值高低的核心评价标准,并基于此建立轮对轴承故障自适应诊断模型。该模型将轴承振动信号进行EEMD分解得到不同尺度的IMF,依据IMF熵价值算法,筛选出价值更高的IMF进行信号重构,对重构信号进行希尔伯特变换,应用其边际谱提取轮对轴承振动特性频率。应用无故障轴承及三种不同故障轴承对本模型进行试验验证。结果表明,该方法能凸显轴承特性频率,能够有效提取轴承旋转频率倍频、故障特征频率及其倍频,并且轴承垂向和横向振动对轴承故障特征频率的检测在谱分辨率及故障表征上都有较好的表现力。 展开更多
关键词 轮对轴承 经验模态分解 本征模态函数 自适应故障诊断 能量熵 边际谱
在线阅读 下载PDF
基于IMF能量矩和SVM的煤矸识别 被引量:16
16
作者 窦希杰 王世博 +1 位作者 谢洋 宣统 《振动与冲击》 EI CSCD 北大核心 2020年第24期39-45,共7页
针对综放工作面的煤矸识别问题,提出了一种基于固有模态函数(IMF)能量矩和支持向量机(SVM)的煤矸识别方法。使用仿真信号验证了该方法所提取的IMF能量矩可以反映信号的能量沿时间轴的分布情况,相较于IMF能量可以更好地表征信号的特征。... 针对综放工作面的煤矸识别问题,提出了一种基于固有模态函数(IMF)能量矩和支持向量机(SVM)的煤矸识别方法。使用仿真信号验证了该方法所提取的IMF能量矩可以反映信号的能量沿时间轴的分布情况,相较于IMF能量可以更好地表征信号的特征。使用该方法进行煤矸识别时,对放顶煤过程中采集到的顶煤和矸石冲击液压支架的振动信号进行集合经验模态分解分解(EEMD),得到若干个IMF,根据分解结果提取包含振动信号主要信息的前8个IMF分量,进一步计算其能量矩,将待测样本信号的IMF能量矩作为特征向量输入训练好的支持向量机进行放煤和放矸石两种工况的识别。试验结果表明,该方法能有效的完成对煤矸振动样本数据的识别,平均识别准确率达到90%。 展开更多
关键词 放顶煤 煤矸识别 集合经验模态分解(EEMD) 固有模态函数(imf) 能量矩 支持向量机(SVM)
在线阅读 下载PDF
基于加权IMF对时间序列相似匹配 被引量:1
17
作者 孙汝儒 肖迪 《计算机应用研究》 CSCD 北大核心 2013年第12期3664-3666,共3页
经验模态分解(EMD)算法非常适合非稳定序列信号、非线性序列信号以及复杂信号的分解,具有很高的噪声比。序列信号经过EMD分解为本征模函数(IMF)以及残差序列,所分解出来的IMF包含了原序列信号不同时间尺度的局部特征信号,是整个原序列的... 经验模态分解(EMD)算法非常适合非稳定序列信号、非线性序列信号以及复杂信号的分解,具有很高的噪声比。序列信号经过EMD分解为本征模函数(IMF)以及残差序列,所分解出来的IMF包含了原序列信号不同时间尺度的局部特征信号,是整个原序列的"去杂"反映。针对IMF所包含的不同尺度的特征这一特性,给出用EMD分解原始序列信号,提取其全部有限个本征模函数和残差序列,根据不同的IMF所包含原序列的特征信息量的大小引入信息权重w,然后通过欧氏距离对各个序列不同IMF序列进行相似匹配判定,最后通过综合各个IMF所占权重综合判定时间序列的相似匹配。实验结果表明,基于IMF对时间序列相似匹配和直接对原时间序列进行匹配,前者首先对时间序列进行分解,去掉其噪声等干扰,提取出IMF间接进行加权匹配,提高了时间序列的模式匹配精度,证明了该方法的有效性。 展开更多
关键词 经验模态分解算法 本征模函数 本征模函数加权 相似模式匹配
在线阅读 下载PDF
全矢IMF信息熵用于高速列车转向架故障诊断 被引量:7
18
作者 李亚兰 金炜东 《振动.测试与诊断》 EI CSCD 北大核心 2021年第5期874-879,1030,共7页
针对高速列车转向架振动信号具有非线性、非平稳的特征,以及单通道故障诊断带来的信息不完整问题,提出了一种多元经验模态分解(multivariate empirical mode decomposition,简称MEMD)和全矢本征模态函数(intrinsic mode function,简称I... 针对高速列车转向架振动信号具有非线性、非平稳的特征,以及单通道故障诊断带来的信息不完整问题,提出了一种多元经验模态分解(multivariate empirical mode decomposition,简称MEMD)和全矢本征模态函数(intrinsic mode function,简称IMF)信息熵相结合的高速列车故障特征提取方法。首先,使用MEMD方法对同源双通道的振动信号进行分解,得到一系列的2元本征模态函数;其次,分别计算前6个IMF的全矢IMF信息熵,通过特征评价方法进行特征维数约简;最后,将得到的特征向量作为支持向量机的输入来识别转向架的故障类型。实验结果表明,该方法能有效提高转向架的故障识别率,最高可达到100%,验证了全矢IMF信息熵在高速列车故障诊断中的可行性。 展开更多
关键词 高速列车转向架 多元经验模态分解 本征模态函数 全矢imf信息熵 特征评价 支持向量机
在线阅读 下载PDF
基于IMF能量矩的脑电情绪特征提取研究 被引量:2
19
作者 王成龙 韦巍 李天永 《现代电子技术》 北大核心 2018年第20期10-13,共4页
为了提高脑电信号情绪识别分类的准确率,在小波变换的基础上,结合经验模态分解(EMD)和能量矩提出一种新的脑电特征提取方法。该研究利用小波变换提取左右前额叶(AF3,AF4)、左右额叶(F3,F4)和左右顶叶(FC5,FC6)通道的α波、θ波、β波和... 为了提高脑电信号情绪识别分类的准确率,在小波变换的基础上,结合经验模态分解(EMD)和能量矩提出一种新的脑电特征提取方法。该研究利用小波变换提取左右前额叶(AF3,AF4)、左右额叶(F3,F4)和左右顶叶(FC5,FC6)通道的α波、θ波、β波和γ波节律;对提取的脑电节律进行EMD分解获得固有模态函数(IMF)分量,再进一步提取IMF分量的能量矩特征;最后使用支持向量机实现情感状态评估。实验结果表明,将IMF能量矩用于脑电信号情感识别是可行的。 展开更多
关键词 小波变换 经验模态分解 本征模态函数 能量矩 脑电信号 情感识别
在线阅读 下载PDF
漏表面波IMF_(1)能量识别无砟轨道脱空适用性研究
20
作者 马嘉霈 袁笙哲 +3 位作者 肖军华 李航 潘越 苏志鹏 《振动.测试与诊断》 EI CSCD 北大核心 2023年第5期850-858,1033,1034,共11页
为了研究漏表面波法对高铁无砟轨道层间脱空检测的适用性,建立脱空特征指标,通过含层间脱空的板式无砟轨道实尺模型进行试验,建立空气‑无砟轨道耦合有限元模型,分析不同工况下的冲击响应声场分布特征;进一步对漏表面波信号进行希尔伯特... 为了研究漏表面波法对高铁无砟轨道层间脱空检测的适用性,建立脱空特征指标,通过含层间脱空的板式无砟轨道实尺模型进行试验,建立空气‑无砟轨道耦合有限元模型,分析不同工况下的冲击响应声场分布特征;进一步对漏表面波信号进行希尔伯特‑黄变换,保留高频特征信号至第1阶本征模函数(intrinsic mode function,简称IMF_(1)),分解低频干扰信号至高阶本征模函数,提出以IMF_(1)能量为特征指标的层间脱空判识方法。研究结果表明:随着脱空长度和脱空至荷载冲击点距离的增大,漏表面波IMF_(1)能量分布呈现正相关变化趋势;IMF_(1)能量对CRTSII型板式无砟轨道板中CA砂浆层脱空0.2~0.5 m较为敏感,基于漏表面波的CA砂浆层脱空检测具备一定理论可行性。 展开更多
关键词 板式无砟轨道 脱空识别 漏表面波 本征函数 第1阶本征模函数能量
在线阅读 下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部