In order to address the current inability of screen printing to monitor printing pressure online,an online printing pressure monitoring system applied to screen printing machines was designed in this study.In this stu...In order to address the current inability of screen printing to monitor printing pressure online,an online printing pressure monitoring system applied to screen printing machines was designed in this study.In this study,the consistency of printed electrodes was measured by using a confocal microscope and the pressure distribution detected by online pressure monitoring system was compared to investigate the relationship.The results demonstrated the relationship between printing pressure and the consistency of printed electrodes.As printing pressure increases,the ink layer at the corresponding position becomes thicker and that higher printing pressure enhances the consistency of the printed electrodes.The experiment confirms the feasibility of the online pressure monitoring system,which aids in predicting and controlling the consistency of printed electrodes,thereby improving their performance.展开更多
In the scenario of a steam generator tube rupture accident in a lead-cooled fast reactor,secondary circuit subcooled water under high pressure is injected into an ordinary-pressure primary vessel,where a molten lead-b...In the scenario of a steam generator tube rupture accident in a lead-cooled fast reactor,secondary circuit subcooled water under high pressure is injected into an ordinary-pressure primary vessel,where a molten lead-based alloy(typically pure lead or lead-bismuth eutectic(LBE))is used as the coolant.To clarify the pressure build-up characteristics under water-jet injection,this study conducted several experiments by injecting pressurized water into a molten LBE pool at Sun Yat-sen University.To obtain a further understanding,several new experimental parameters were adopted,including the melt temperature,water subcooling,injection pressure,injection duration,and nozzle diameter.Through detailed analyses,it was found that the pressure and temperature during the water-melt interaction exhibited a consistent variation trend with our previous water-droplet injection mode LBE experiment.Similarly,the existence of a steam explosion was confirmed,which typically results in a much stronger pressure build-up.For the non-explosion cases,increasing the injection pressure,melt-pool temperature,nozzle diameter,and water subcooling promoted pressure build-up in the melt pool.However,a limited enhancement effect was observed when increasing the injection duration,which may be owing to the continually rising pressure in the interaction vessel or the isolation effect of the generated steam cavity.Regardless of whether a steam explosion occurred,the calculated mechanical and kinetic energy conversion efficiencies of the melt were relatively small(not exceeding 4.1%and 0.7%,respectively).Moreover,the range of the conversion efficiency was similar to that of previous water-droplet experiments,although the upper limit of the jet mode was slightly lower.展开更多
Molybdenum nitride,renowned for its exceptional physical and chemical properties,has garnered extensive attention and research interest.In this study,we employed first-principles calculations and the CALYPSO structure...Molybdenum nitride,renowned for its exceptional physical and chemical properties,has garnered extensive attention and research interest.In this study,we employed first-principles calculations and the CALYPSO structure prediction method to conduct a comprehensive analysis of the crystal structures and electronic properties of molybdenum nitride(Mo_(x)N_(1-x))under high pressure.We discovered two novel high-pressure phases:Imm2-MoN_(3) and Cmmm-MoN_(4),and confirmed their stability through the analysis of elastic constants and phonon dispersion curves.Notably,the MoN_(4) phase,with its high Vickers hardness of 36.9 GPa,demonstrates potential as a hard material.The results of this study have broadened the range of known high-pressure phases of molybdenum nitride,providing the groundwork for future theoretical and experimental researches.展开更多
The pressure and temperature increase resulting from the impact of different threats onto target materials is analyzed with a unified laboratory-scale setup.This allows deriving qualitative information on the occurrin...The pressure and temperature increase resulting from the impact of different threats onto target materials is analyzed with a unified laboratory-scale setup.This allows deriving qualitative information on the occurring phenomenology as well as quantitative statements about the relative effects sizes as a function of target material and threat.The considered target materials are steel,aluminum,and magnesium.As threats,kinetic energy penetrator,explosively formed projectile,and shaped charge jet are used.For the investigated combinations,the measured overpressures vary by a factor of up to 5 for a variation of the material,by a factor of up to 7 for a variation of the threat,and by a factor larger than 15for a simultaneous variation of both.The obtained results as well as the experimental approach are relevant for the basic understanding of impact effects and risks due to material reactivity.The paper combines two main aims.Firstly,to provide a summary of own prior work in a coherent journal article and,secondly,to review and discuss these earlier results with a new perspective.展开更多
The interplay between electronic topological phase transitions and superconductivity in the field of condensed matter physics has consistently captivated researchers.Here we have succeeded in modulating the Lifshitz t...The interplay between electronic topological phase transitions and superconductivity in the field of condensed matter physics has consistently captivated researchers.Here we have succeeded in modulating the Lifshitz transition by pressure and realized superconductivity.At 25.7 GPa,superconductivity with a transition temperature of 1.9 K has been observed in 3R-NbS_(2).The Hall coefficient changes from negative to positive at 14 GPa,indicating a Lifshitz transition in 3R-NbS_(2),and the carrier concentration continues to increase with increasing pressure.X-ray diffraction results indicate that the appearance of superconductivity cannot be attributable to structural transitions.Based on theoretical calculations,the emergence of a new band is attributed to the Lifshitz transition and the new band coincides with the Fermi surface at the pressure of 30 GPa.These findings provide new insights into the relationship between the Lifshitz transition and superconductivity.展开更多
In this paper,a type of reinforcing structure for composite shell with single and through hole is presented.The experimental tests for the composite shells without hole,with single hole and reinforced structure,with t...In this paper,a type of reinforcing structure for composite shell with single and through hole is presented.The experimental tests for the composite shells without hole,with single hole and reinforced structure,with through hole and reinforced structure subjected to hydrostatic pressure were carried out by the designed experimental test system.The mechanical responses of the composite shells under hydrostatic pressure are obtained by the high-speed camera and strain measurement.The results show that the entire deformation process of the shell can be divided into three:uniform compression,"buckling mode formation"and buckling.The"buckling mode formation"process is captured and reported for the first time.For the composite shell with single hole,the proposed reinforcing structure has a significant reinforcement effect on the shell and the buckling capacity of the shell is not weaker than the complete composite shell.For the composite shell with through hole,sealing effect can be achieved by the proposed reinforcing structure,but the buckling capacity of the shell after reinforcement can only reach 77%of the original buckling capacity.展开更多
The underwater anechoic coating technology,which considers pressure resistance and low-frequency broadband sound absorption,has become a research hotspot in underwater acoustics and has received wide attention to addr...The underwater anechoic coating technology,which considers pressure resistance and low-frequency broadband sound absorption,has become a research hotspot in underwater acoustics and has received wide attention to address the increasingly advanced low-frequency sonar detection technology and adapt to the working environment of underwater vehicles in deep submergence.One the one hand,controlling low-frequency sound waves in water is more challenging than in air.On the other hand,in addition to initiating structural deformation,hydrostatic pressure also changes material parameters,both of which have a major effect on the sound absorption performance of the anechoic coating.Therefore,resolving the pressure resistance and acoustic performance of underwater acoustic coatings is difficult.Particularly,a bottleneck problem that must be addressed in this field is the acoustic structure design with low-frequency broadband sound absorption under high hydrostatic pressure.Based on the influence of hydrostatic pressure on underwater anechoic coatings,the research status of underwater acoustic structures under hydrostatic pressure from the aspects of sound absorption mechanisms,analysis methods,and structural designs is reviewed in this paper.Finally,the challenges and research trends encountered by underwater anechoic coating technology under hydrostatic pressure are summarized,providing a reference for the design and research of low-frequency broadband anechoic coating.展开更多
Lanthanide metal-organic frameworks(Ln-MOFs)have received extensive attention in the development of photoluminescent(PL)materials due to their stable structures and unique line-like emission spectroscopic properties.H...Lanthanide metal-organic frameworks(Ln-MOFs)have received extensive attention in the development of photoluminescent(PL)materials due to their stable structures and unique line-like emission spectroscopic properties.However,in order to prepare Ln-MOFs with high PL quantum yield(PLQY),further improving the sensitization efficiency of the“antenna effect”is essential.Herein,remarkably enhanced PL in[Tb_(2)(BDC)_(3)(DMF)_(2)(H_(2)O)_(2)]_n MOF is successfully achieved via high-pressure engineering at room temperature.Notably,the PL intensity continues to increase as the pressure increases,reaching its peak at 12.0 GPa,which is 4.4 times that of the initial state.Detailed experimental and theoretical calculations have demonstrated that pressure engineering significantly narrows the bandgap of[Tb_(2)(BDC)_(3)(DMF)_(2)(H_(2)O)_(2)]_n,optimizing both singlet and triplet energy levels.Ultimately,higher antenna effect sensitization efficiency is achieved by promoting intersystem crossing and energy transfer processes.Our work provides a promising strategy for the development of high PLQY Ln-MOFs.展开更多
Using natural gas(NG)as the primary fuel helps alleviate the fossil fuel crisis while reducing engine soot and nitrogen oxide(NO_(X))emissions.In this paper,the influences of a novel split injection concept on an NG h...Using natural gas(NG)as the primary fuel helps alleviate the fossil fuel crisis while reducing engine soot and nitrogen oxide(NO_(X))emissions.In this paper,the influences of a novel split injection concept on an NG high pressure direct injection(HPDI)engine are examined.Four typical split injection strategies,namely split pre-injection of pilot diesel(PD)and NG,split post-injection of PD and NG,split pre-injection of NG,and split post-injection of PD,were developed to investigate the influences on combustion and emissions.Results revealed that split pre injection of NG enhanced the atomization of PD,whereas the split post-injection of NG lowered the temperature in the core region of the PD spray,resulting in the deterioration of combustion.The effect of the split injection strategy on indicated thermal efficiency exceeded 7.5%.Split pre-injection was favorable to enhancing thermal efficiency,whereas split post-injection was not.Ignition delay,combustion duration,and premixed combustion time proportion were affected by injection strategies by 3.8%,50%,and 19.7%,respectively.Split pre-injection increased CH_(4) emission in the exhaust.Split post-injection,especially split post-injection of PD and NG,reduced the unburned CH_(4) emission by approximately 30%.When the split post-injection ratio was less than 30%,the trade-off between NO_(X) and soot was interrupted.The distribution range of hydroxyl radicals was expanded by pre-injection,and NO_(X) was generated in the region where the NG jet hit the wall.This paper provides valuable insights into the optimization of HPDI injection parameters.展开更多
The rising flexible and intelligent electronics greatly facilitate the noninvasive and timely tracking of physiological information in telemedicine healthcare.Meticulously building bionic-sensitive moieties is vital f...The rising flexible and intelligent electronics greatly facilitate the noninvasive and timely tracking of physiological information in telemedicine healthcare.Meticulously building bionic-sensitive moieties is vital for designing efficient electronic skin with advanced cognitive functionalities to pluralistically capture external stimuli.However,realistic mimesis,both in the skin’s three-dimensional interlocked hierarchical structures and synchronous encoding multistimuli information capacities,remains a challenging yet vital need for simplifying the design of flexible logic circuits.Herein,we construct an artificial epidermal device by in situ growing Cu_(3)(HHTP)_(2) particles onto the hollow spherical Ti_(3)C_(2)T_(x) surface,aiming to concurrently emulate the spinous and granular layers of the skin’s epidermis.The bionic Ti_(3)C_(2)T_(x)@Cu_(3)(HHTP)_(2) exhibits independent NO_(2) and pressure response,as well as novel functionalities such as acoustic signature perception and Morse code-encrypted message communication.Ultimately,a wearable alarming system with a mobile application terminal is self-developed by integrating the bimodular senor into flexible printed circuits.This system can assess risk factors related with asthmatic,such as stimulation of external NO_(2) gas,abnormal expiratory behavior and exertion degrees of fingers,achieving a recognition accuracy of 97.6%as assisted by a machine learning algorithm.Our work provides a feasible routine to develop intelligent multifunctional healthcare equipment for burgeoning transformative telemedicine diagnosis.展开更多
(Mg,Fe)SiO_(3) is primarily located in the mantle and has a substantial impact on geophysical and geochemical processes.Here,we employ molecular dynamics simulations to investigate the structural and transport propert...(Mg,Fe)SiO_(3) is primarily located in the mantle and has a substantial impact on geophysical and geochemical processes.Here,we employ molecular dynamics simulations to investigate the structural and transport properties of(Mg,Fe)SiO_(3) with varying iron contents at temperatures up to 5000 K and pressures up to 135 GPa.We thoroughly examine the effects of pressure,temperature,and iron content on the bond lengths,coordination numbers,viscosities,and electrical conductivities of(Mg,Fe)SiO_(3).Our calculations indicate that the increase of pressure leads to the shortening of the O-O and Mg-O bond lengths,while the Si-O bond lengths exhibit the initial increase with pressure up to 40 GPa,after which they are almost unchanged.The coordination numbers of Si transition from four-fold to six-fold and eventually reach eight-fold coordination at 135 GPa.The enhanced pressure causes the decrease of the diffusion coefficients and the increase of the viscosities of(Mg,Fe)SiO_(3).The increased temperatures slightly decrease the coordination numbers and viscosities,as well as obviously increase the diffusion coefficients and electrical conductivities of(Mg,Fe)SiO_(3).Additionally,iron doping facilitates the diffusion of Si and O,reduces the viscosities,and enhances the electrical conductivities of(Mg,Fe)SiO_(3).These findings advance fundamental understanding of the structural and transport properties of(Mg,Fe)SiO_(3) under high temperature and high pressure,which provide novel insights for unraveling the complexities of geological processes within the Earth's mantle.展开更多
Accurate prediction of formation pore pressure is essential to predict fluid flow and manage hydrocarbon production in petroleum engineering.Recent deep learning technique has been receiving more interest due to the g...Accurate prediction of formation pore pressure is essential to predict fluid flow and manage hydrocarbon production in petroleum engineering.Recent deep learning technique has been receiving more interest due to the great potential to deal with pore pressure prediction.However,most of the traditional deep learning models are less efficient to address generalization problems.To fill this technical gap,in this work,we developed a new adaptive physics-informed deep learning model with high generalization capability to predict pore pressure values directly from seismic data.Specifically,the new model,named CGP-NN,consists of a novel parametric features extraction approach(1DCPP),a stacked multilayer gated recurrent model(multilayer GRU),and an adaptive physics-informed loss function.Through machine training,the developed model can automatically select the optimal physical model to constrain the results for each pore pressure prediction.The CGP-NN model has the best generalization when the physicsrelated metricλ=0.5.A hybrid approach combining Eaton and Bowers methods is also proposed to build machine-learnable labels for solving the problem of few labels.To validate the developed model and methodology,a case study on a complex reservoir in Tarim Basin was further performed to demonstrate the high accuracy on the pore pressure prediction of new wells along with the strong generalization ability.The adaptive physics-informed deep learning approach presented here has potential application in the prediction of pore pressures coupled with multiple genesis mechanisms using seismic data.展开更多
Enzymatic hydrolysis of proteins can enhance their emulsifying properties and antioxidant activities.However,the problem related to the hydrolysis of proteins was the generation of the bitter taste.Recently,high hydro...Enzymatic hydrolysis of proteins can enhance their emulsifying properties and antioxidant activities.However,the problem related to the hydrolysis of proteins was the generation of the bitter taste.Recently,high hydrostatic pressure(HHP)treatment has attracted much interest and has been used in several studies on protein modification.Hence,the study aimed to investigate the effects of enzymatic hydrolysis by Corolase PP under different pressure treatments(0.1,100,200,and 300 MPa for 1-5 h at 50℃)on the emulsifying property,antioxidant activity,and bitterness of soybean protein isolate hydrolysate(SPIH).As observed,the hydrolysate obtained at 200 MPa for 4 h had the highest emulsifying activity index(47.49 m^(2)/g)and emulsifying stability index(92.98%),and it had higher antioxidant activities(44.77%DPPH free radical scavenging activity,31.12%superoxide anion radical scavenging activity,and 61.50%copper ion chelating activity).At the same time,the enhancement of emulsion stability was related to the increase of zeta potential and the decrease of mean particle size.In addition,the hydrolysate obtained at 200 MPa for 4 h had a lower bitterness value and showed better palatability.This study has a broad application prospect in developing food ingredients and healthy foods.展开更多
Effective monitoring of the structural health of combined coal-rock under complex geological conditions by pressure stimulated currents(PSCs)has great potential for the understanding of dynamic disasters in undergroun...Effective monitoring of the structural health of combined coal-rock under complex geological conditions by pressure stimulated currents(PSCs)has great potential for the understanding of dynamic disasters in underground engineering.To reveal the effect of this way,the uniaxial compression experiments with PSC monitoring were conducted on three types of coal-rock combination samples with different strength combinations.The mechanism explanation of PSCs are investigated by resistivity test,atomic force microscopy(AFM)and computed tomography(CT)methods,and a PSC flow model based on progressive failure process is proposed.The influence of strength combinations on PSCs in the progressive failure process are emphasized.The results show the PSC responses between rock part,coal part and the two components are different,which are affected by multi-scale fracture characteristics and electrical properties.As the rock strength decreases,the progressive failure process changes obviously with the influence range of interface constraint effect decreasing,resulting in the different responses of PSC strength and direction in different parts to fracture behaviors.The PSC flow model is initially validated by the relationship between the accumulated charges of different parts.The results are expected to provide a new reference and method for mining design and roadway quality assessment.展开更多
The regulation of the burning rate pressure exponent for the ammonium perchlorate/hydroxylterminated polybutadiene/aluminum(AP/HTPB/Al)composite propellants under high pressures is a crucial step for its application i...The regulation of the burning rate pressure exponent for the ammonium perchlorate/hydroxylterminated polybutadiene/aluminum(AP/HTPB/Al)composite propellants under high pressures is a crucial step for its application in high-pressure solid rocket motors.In this work,the combustion characteristics of AP/HTPB/Al composite propellants containing ferrocene-based catalysts were investigated,including the burning rate,thermal behavior,the local heat transfer,and temperature profile in the range of 7-28 MPa.The results showed that the exponent breaks were still observed in the propellants after the addition of positive catalysts(Ce-Fc-MOF),the burning rate inhibitor((Ferrocenylmethyl)trimethylammonium bromide,Fc Br)and the mixture of Fc Br/catocene(GFP).However,the characteristic pressure has increased,and the exponent decreased from 1.14 to 0.66,0.55,and 0.48 when the addition of Ce-FcMOF,Fc Br and Fc Br/GFP in the propellants.In addition,the temperature in the first decomposition stage was increased by 7.50℃ and 11.40℃ for the AP/Fc Br mixture and the AP/Fc Br/GFP mixture,respectively,compared to the pure AP.On the other hand,the temperature in the second decomposition stage decreased by 48.30℃ and 81.70℃ for AP/Fc Br and AP/Fc Br/GFP mixtures,respectively.It was also found that Fc Br might generate ammonia to cover the AP surface.In this case,a reaction between the methyl in Fc Br and perchloric acid caused more ammonia to appear at the AP surface,resulting in the suppression of ammonia desorption.In addition,the coarse AP particles on the quenched surface were of a concave shape relative to the binder matrix under low and high pressures when the catalysts were added.In the process,the decline at the AP/HTPB interface was only exhibited in the propellant with the addition of Ce-Fc-MOF.The ratio of the gas-phase temperature gradient of the propellants containing catalysts was reduced significantly below and above the characteristic pressure,rather than 3.6 times of the difference in the blank propellant.Overall,the obtained results demonstrated that the pressure exponent could be effectively regulated and controlled by adjusting the propellant local heat and mass transfer under high and low pressures.展开更多
In-situ stress is a common stress in the exploration and development of oil reservoirs. Therefore, it is of great significance to study the propagation characteristics of borehole acoustic waves in fluid-saturated por...In-situ stress is a common stress in the exploration and development of oil reservoirs. Therefore, it is of great significance to study the propagation characteristics of borehole acoustic waves in fluid-saturated porous media under stress.Based on the acoustoelastic theory of fluid-saturated porous media, the field equation of fluid-saturated porous media under the conditions of confining pressure and pore pressure and the acoustic field formula of multipole source excitation in open hole are given. The influences of pore pressure and confining pressure on guided waves of multipole borehole acoustic field in fluid-saturated porous media are investigated. The numerical results show that the phase velocity and excitation intensity of guided wave increase significantly under the confining pressure. For a given confining pressure, the phase velocity of the guided wave decreases with pore pressure increasing. The excitation intensity of guided wave increases at low frequency and then decreases at high frequency with pore pressure increasing, except for that of Stoneley wave which decreases in the whole frequency range. These results will help us get an insight into the influences of confining pressure and pore pressure on the acoustic field of multipole source in borehole around fluid-saturated porous media.展开更多
Deformation can change the transition pathway of materials under high pressure,thus significantly affects physical and chemical properties of matters.However,accurate pressure calibration under deformation is challeng...Deformation can change the transition pathway of materials under high pressure,thus significantly affects physical and chemical properties of matters.However,accurate pressure calibration under deformation is challenging and thereby causes relatively large pressure uncertainties in deformation experiments,resulting in the synthesis of complex multiphase materials.Here,pressure generations of three types of deformation assemblies were well calibrated in a Walker-type largevolume press(LVP)by electrical resistance measurements combined with finite element simulations(FESs).Hard Al_(2)O_(3) or diamond pistons in shear and uniaxial deformation assemblies significantly increase the efficiency of pressure generation compared with the conventional quasi-hydrostatic assembly.The uniaxial deformation assembly using flat diamond pistons possesses the highest efficiency in these deformation assemblies.This finding is further confirmed by stress distribution analysis based on FESs.With this deformation assembly,we found shear can effectively promote the transformation of C60 into diamond under high pressure and realized the synthesis of phase-pure diamond at relatively moderate pressure and temperature conditions.The present developed techniques will help improve pressure efficiencies in LVP and explore the new physical and chemical properties of materials under deformation in both science and technology.展开更多
Deep coalbed methane(DCBM),an unconventional gas reservoir,has undergone significant advancements in recent years,sparking a growing interest in assessing pore pressure dynamics within these reservoirs.While some prod...Deep coalbed methane(DCBM),an unconventional gas reservoir,has undergone significant advancements in recent years,sparking a growing interest in assessing pore pressure dynamics within these reservoirs.While some production data analysis techniques have been adapted from conventional oil and gas wells,there remains a gap in the understanding of pore pressure generation and evolution,particularly in wells subjected to large-scale hydraulic fracturing.To address this gap,a novel technique called excess pore pressure analysis(EPPA)has been introduced to the coal seam gas industry for the first time to our knowledge,which employs dual-phase flow principles based on consolidation theory.This technique focuses on the generation and dissipation for excess pore-water pressure(EPWP)and excess pore-gas pressure(EPGP)in stimulated deep coal reservoirs.Equations have been developed respectively and numerical solutions have been provided using the finite element method(FEM).Application of this model to a representative field example reveals that excess pore pressure arises from rapid loading,with overburden weight transferred under undrained condition due to intense hydraulic fracturing,which significantly redistributes the weight-bearing role from the solid coal structure to the injected fluid and liberated gas within artificial pores over a brief timespan.Furthermore,field application indicates that the dissipation of EPWP and EPGP can be actually considered as the process of well production,where methane and water are extracted from deep coalbed methane wells,leading to consolidation for the artificial reservoirs.Moreover,history matching results demonstrate that the excess-pressure model established in this study provides a better explanation for the declining trends observed in both gas and water production curves,compared to conventional practices in coalbed methane reservoir engineering and petroleum engineering.This research not only enhances the understanding of DCBM reservoir behavior but also offers insights applicable to production analysis in other unconventional resources reliant on hydraulic fracturing.展开更多
With the increase of underground engineering construction depth,the phenomenon of surrounding rock sudden failure caused by supporting structure failure occurs frequently.The conventional unloading con-fining pressure...With the increase of underground engineering construction depth,the phenomenon of surrounding rock sudden failure caused by supporting structure failure occurs frequently.The conventional unloading con-fining pressure(CUCP)test cannot simulate the plastic yielding and instantaneous unloading process of supporting structure to rock.Thus,a high stress loading-instantaneous unloading confining pressure(HSL-IUCP)test method was proposed and applied by considering bolt’s fracture under stress.The wall thickness of confining pressure plates and the material of bolts were changed to realize different confin-ing pressure loading stiffness(CPLS)and lateral maximum allowable deformation(LMAD).The superio-rity of HSL-ICPU method is verified compared with CUCP.The rock failure mechanism caused by sudden failure of supporting structure is obtained.The results show that when CPLS increases from 1.35 to 2.33 GN/m,rock’s peak strength and elastic modulus increase by 25.18%and 23.70%,respectively.The fracture characteristics change from tensile failure to tensile-shear mixed failure.When LMAD decreases from 0.40 to 0.16 mm,rock’s residual strength,peak strain,and residual strain decrease by 91.80%,16.94%,and 21.92%,respectively,and post-peak drop modulus increases by 140.47%.The test results obtained by this method are closer to rock’s real mechanical response characteristics compared with CUCP.展开更多
Motivated by the recent discovery of unconventional superconductivity around a magnetic quantum critical point in pressurized CeSb_(2),here we present a high-pressure study of an isostructural antiferromagnetic(AFM) S...Motivated by the recent discovery of unconventional superconductivity around a magnetic quantum critical point in pressurized CeSb_(2),here we present a high-pressure study of an isostructural antiferromagnetic(AFM) SmSb_(2) through electrical transport and synchrotron x-ray diffraction measurements.At P_(C)~2.5 GPa,we found a pressure-induced magnetic phase transition accompanied by a Cmca→P4/nmm structural phase transition.In the pristine AFM phase below P_(C),the AFM transition temperature of SmSb_(2) is insensitive to pressure;in the emergent magnetic phase above P_(C),however,the magnetic critical temperature increases rapidly with increasing pressure.In addition,at ambient pressure,the magnetoresistivity(MR) of SmSb_(2) increases suddenly upon cooling below the AFM transition temperature and presents linear nonsaturating behavior under high field at 2 K.With increasing pressure above P_(C),the MR behavior remains similar to that observed at ambient pressure,both in terms of temperature-and field-dependent MR.This leads us to argue an AFM-like state for SmSb_(2) above P_(C).Within the investigated pressure of up to 45.3 GPa and the temperature of down to 1.8 K,we found no signature of superconductivity in SmSb_(2).展开更多
文摘In order to address the current inability of screen printing to monitor printing pressure online,an online printing pressure monitoring system applied to screen printing machines was designed in this study.In this study,the consistency of printed electrodes was measured by using a confocal microscope and the pressure distribution detected by online pressure monitoring system was compared to investigate the relationship.The results demonstrated the relationship between printing pressure and the consistency of printed electrodes.As printing pressure increases,the ink layer at the corresponding position becomes thicker and that higher printing pressure enhances the consistency of the printed electrodes.The experiment confirms the feasibility of the online pressure monitoring system,which aids in predicting and controlling the consistency of printed electrodes,thereby improving their performance.
基金supported by Basic and Applied Basic research foundation of Guangdong province(Nos.2021A1515010343 and 2022A1515011582)the Science and Technology Program of Guangdong Province(Nos.2021A0505030026 and 2022A0505050029).
文摘In the scenario of a steam generator tube rupture accident in a lead-cooled fast reactor,secondary circuit subcooled water under high pressure is injected into an ordinary-pressure primary vessel,where a molten lead-based alloy(typically pure lead or lead-bismuth eutectic(LBE))is used as the coolant.To clarify the pressure build-up characteristics under water-jet injection,this study conducted several experiments by injecting pressurized water into a molten LBE pool at Sun Yat-sen University.To obtain a further understanding,several new experimental parameters were adopted,including the melt temperature,water subcooling,injection pressure,injection duration,and nozzle diameter.Through detailed analyses,it was found that the pressure and temperature during the water-melt interaction exhibited a consistent variation trend with our previous water-droplet injection mode LBE experiment.Similarly,the existence of a steam explosion was confirmed,which typically results in a much stronger pressure build-up.For the non-explosion cases,increasing the injection pressure,melt-pool temperature,nozzle diameter,and water subcooling promoted pressure build-up in the melt pool.However,a limited enhancement effect was observed when increasing the injection duration,which may be owing to the continually rising pressure in the interaction vessel or the isolation effect of the generated steam cavity.Regardless of whether a steam explosion occurred,the calculated mechanical and kinetic energy conversion efficiencies of the melt were relatively small(not exceeding 4.1%and 0.7%,respectively).Moreover,the range of the conversion efficiency was similar to that of previous water-droplet experiments,although the upper limit of the jet mode was slightly lower.
基金Project supported by the National Natural Science Foundation of China(Grant No.11964026)the Natural Science Foundation of Inner Mongolia,China(Grant Nos.2019MS01010 and 2023LHMS01014)+4 种基金Higher Educational Scientific Research Projects of Inner Mongolia(Grant Nos.NJZZ19145 and NJZZ22470)the Educational Scientific Research Project of Liaoning Province(Grant No.LJKZ0452)the Doctoral Starting up Foundation of Inner Mongolia Minzu University of Science and Technology(Grant No.BSZ023)Inner Mongolia Autonomous Region Youth Capacity Improvement Project(Grant No.GXKY22157)Higher Physics Major Teaching Steering Committee of the Ministry of Education Project(Grant No.JZW-23-GT-21)。
文摘Molybdenum nitride,renowned for its exceptional physical and chemical properties,has garnered extensive attention and research interest.In this study,we employed first-principles calculations and the CALYPSO structure prediction method to conduct a comprehensive analysis of the crystal structures and electronic properties of molybdenum nitride(Mo_(x)N_(1-x))under high pressure.We discovered two novel high-pressure phases:Imm2-MoN_(3) and Cmmm-MoN_(4),and confirmed their stability through the analysis of elastic constants and phonon dispersion curves.Notably,the MoN_(4) phase,with its high Vickers hardness of 36.9 GPa,demonstrates potential as a hard material.The results of this study have broadened the range of known high-pressure phases of molybdenum nitride,providing the groundwork for future theoretical and experimental researches.
文摘The pressure and temperature increase resulting from the impact of different threats onto target materials is analyzed with a unified laboratory-scale setup.This allows deriving qualitative information on the occurring phenomenology as well as quantitative statements about the relative effects sizes as a function of target material and threat.The considered target materials are steel,aluminum,and magnesium.As threats,kinetic energy penetrator,explosively formed projectile,and shaped charge jet are used.For the investigated combinations,the measured overpressures vary by a factor of up to 5 for a variation of the material,by a factor of up to 7 for a variation of the threat,and by a factor larger than 15for a simultaneous variation of both.The obtained results as well as the experimental approach are relevant for the basic understanding of impact effects and risks due to material reactivity.The paper combines two main aims.Firstly,to provide a summary of own prior work in a coherent journal article and,secondly,to review and discuss these earlier results with a new perspective.
基金Project supported by the National Key R&D Program of China(Grant No.2022YFA1405500)the National Natural Science Foundation of China(Grant Nos.52072188 and 12304072)+1 种基金Program for Science and Technology Innovation Team in Zhejiang(Grant No.2021R01004)the Natural Science Foundation of Ningbo(Grant No.2021J121)。
文摘The interplay between electronic topological phase transitions and superconductivity in the field of condensed matter physics has consistently captivated researchers.Here we have succeeded in modulating the Lifshitz transition by pressure and realized superconductivity.At 25.7 GPa,superconductivity with a transition temperature of 1.9 K has been observed in 3R-NbS_(2).The Hall coefficient changes from negative to positive at 14 GPa,indicating a Lifshitz transition in 3R-NbS_(2),and the carrier concentration continues to increase with increasing pressure.X-ray diffraction results indicate that the appearance of superconductivity cannot be attributable to structural transitions.Based on theoretical calculations,the emergence of a new band is attributed to the Lifshitz transition and the new band coincides with the Fermi surface at the pressure of 30 GPa.These findings provide new insights into the relationship between the Lifshitz transition and superconductivity.
基金supported by the Ningbo Major Research and Development Plan Project(Grant No.2024Z135)the Natural Science Basic Research Program of Shaanxi Province(Grant No.2024JC-YBMS-322)+1 种基金China Postdoctoral Science Foundation(Grant No.2020M673492)National Natural Science Foundation of China(Grant No.51909219)。
文摘In this paper,a type of reinforcing structure for composite shell with single and through hole is presented.The experimental tests for the composite shells without hole,with single hole and reinforced structure,with through hole and reinforced structure subjected to hydrostatic pressure were carried out by the designed experimental test system.The mechanical responses of the composite shells under hydrostatic pressure are obtained by the high-speed camera and strain measurement.The results show that the entire deformation process of the shell can be divided into three:uniform compression,"buckling mode formation"and buckling.The"buckling mode formation"process is captured and reported for the first time.For the composite shell with single hole,the proposed reinforcing structure has a significant reinforcement effect on the shell and the buckling capacity of the shell is not weaker than the complete composite shell.For the composite shell with through hole,sealing effect can be achieved by the proposed reinforcing structure,but the buckling capacity of the shell after reinforcement can only reach 77%of the original buckling capacity.
基金Supported by the National Natural Science Foundation of China(Grant No.52271309)Natural Science Foundation of Heilongjiang Province of China(Grant No.YQ2022E104)Doctoral Science and Technology Innovation Fund of Harbin Engineering University(Grant No.3072023GIP0302).
文摘The underwater anechoic coating technology,which considers pressure resistance and low-frequency broadband sound absorption,has become a research hotspot in underwater acoustics and has received wide attention to address the increasingly advanced low-frequency sonar detection technology and adapt to the working environment of underwater vehicles in deep submergence.One the one hand,controlling low-frequency sound waves in water is more challenging than in air.On the other hand,in addition to initiating structural deformation,hydrostatic pressure also changes material parameters,both of which have a major effect on the sound absorption performance of the anechoic coating.Therefore,resolving the pressure resistance and acoustic performance of underwater acoustic coatings is difficult.Particularly,a bottleneck problem that must be addressed in this field is the acoustic structure design with low-frequency broadband sound absorption under high hydrostatic pressure.Based on the influence of hydrostatic pressure on underwater anechoic coatings,the research status of underwater acoustic structures under hydrostatic pressure from the aspects of sound absorption mechanisms,analysis methods,and structural designs is reviewed in this paper.Finally,the challenges and research trends encountered by underwater anechoic coating technology under hydrostatic pressure are summarized,providing a reference for the design and research of low-frequency broadband anechoic coating.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12304261 and 12274177)the China Postdoctoral Science Foundation(Grant No.2024M751076)。
文摘Lanthanide metal-organic frameworks(Ln-MOFs)have received extensive attention in the development of photoluminescent(PL)materials due to their stable structures and unique line-like emission spectroscopic properties.However,in order to prepare Ln-MOFs with high PL quantum yield(PLQY),further improving the sensitization efficiency of the“antenna effect”is essential.Herein,remarkably enhanced PL in[Tb_(2)(BDC)_(3)(DMF)_(2)(H_(2)O)_(2)]_n MOF is successfully achieved via high-pressure engineering at room temperature.Notably,the PL intensity continues to increase as the pressure increases,reaching its peak at 12.0 GPa,which is 4.4 times that of the initial state.Detailed experimental and theoretical calculations have demonstrated that pressure engineering significantly narrows the bandgap of[Tb_(2)(BDC)_(3)(DMF)_(2)(H_(2)O)_(2)]_n,optimizing both singlet and triplet energy levels.Ultimately,higher antenna effect sensitization efficiency is achieved by promoting intersystem crossing and energy transfer processes.Our work provides a promising strategy for the development of high PLQY Ln-MOFs.
基金Supported by the National Natural Science Foundation of China(No.51909154)Shanghai Engineering Research Center of Ship Intelligent Maintenance and Energy Efficiency(No.20DZ2252300).
文摘Using natural gas(NG)as the primary fuel helps alleviate the fossil fuel crisis while reducing engine soot and nitrogen oxide(NO_(X))emissions.In this paper,the influences of a novel split injection concept on an NG high pressure direct injection(HPDI)engine are examined.Four typical split injection strategies,namely split pre-injection of pilot diesel(PD)and NG,split post-injection of PD and NG,split pre-injection of NG,and split post-injection of PD,were developed to investigate the influences on combustion and emissions.Results revealed that split pre injection of NG enhanced the atomization of PD,whereas the split post-injection of NG lowered the temperature in the core region of the PD spray,resulting in the deterioration of combustion.The effect of the split injection strategy on indicated thermal efficiency exceeded 7.5%.Split pre-injection was favorable to enhancing thermal efficiency,whereas split post-injection was not.Ignition delay,combustion duration,and premixed combustion time proportion were affected by injection strategies by 3.8%,50%,and 19.7%,respectively.Split pre-injection increased CH_(4) emission in the exhaust.Split post-injection,especially split post-injection of PD and NG,reduced the unburned CH_(4) emission by approximately 30%.When the split post-injection ratio was less than 30%,the trade-off between NO_(X) and soot was interrupted.The distribution range of hydroxyl radicals was expanded by pre-injection,and NO_(X) was generated in the region where the NG jet hit the wall.This paper provides valuable insights into the optimization of HPDI injection parameters.
基金supported by the National Natural Science Foundation of China(Grant Nos.U22A20184,52250077,and 52272080)the Jilin Province Natural Science Foundation of China(No.20220201093GX)+2 种基金the Fundamental Research Funds for the Central Universitiessupported by the National Research Foundation of Korea(2018R1A3B1052702 to JSK)the Starting growth Technological R&D Program(TIPS Program,No.S3201803,2021,MW)funded by the Ministry of SMEs and Startups(MSS,Korea).
文摘The rising flexible and intelligent electronics greatly facilitate the noninvasive and timely tracking of physiological information in telemedicine healthcare.Meticulously building bionic-sensitive moieties is vital for designing efficient electronic skin with advanced cognitive functionalities to pluralistically capture external stimuli.However,realistic mimesis,both in the skin’s three-dimensional interlocked hierarchical structures and synchronous encoding multistimuli information capacities,remains a challenging yet vital need for simplifying the design of flexible logic circuits.Herein,we construct an artificial epidermal device by in situ growing Cu_(3)(HHTP)_(2) particles onto the hollow spherical Ti_(3)C_(2)T_(x) surface,aiming to concurrently emulate the spinous and granular layers of the skin’s epidermis.The bionic Ti_(3)C_(2)T_(x)@Cu_(3)(HHTP)_(2) exhibits independent NO_(2) and pressure response,as well as novel functionalities such as acoustic signature perception and Morse code-encrypted message communication.Ultimately,a wearable alarming system with a mobile application terminal is self-developed by integrating the bimodular senor into flexible printed circuits.This system can assess risk factors related with asthmatic,such as stimulation of external NO_(2) gas,abnormal expiratory behavior and exertion degrees of fingers,achieving a recognition accuracy of 97.6%as assisted by a machine learning algorithm.Our work provides a feasible routine to develop intelligent multifunctional healthcare equipment for burgeoning transformative telemedicine diagnosis.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12174352 and 12111530103)the Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(Grant No.G1323523065)。
文摘(Mg,Fe)SiO_(3) is primarily located in the mantle and has a substantial impact on geophysical and geochemical processes.Here,we employ molecular dynamics simulations to investigate the structural and transport properties of(Mg,Fe)SiO_(3) with varying iron contents at temperatures up to 5000 K and pressures up to 135 GPa.We thoroughly examine the effects of pressure,temperature,and iron content on the bond lengths,coordination numbers,viscosities,and electrical conductivities of(Mg,Fe)SiO_(3).Our calculations indicate that the increase of pressure leads to the shortening of the O-O and Mg-O bond lengths,while the Si-O bond lengths exhibit the initial increase with pressure up to 40 GPa,after which they are almost unchanged.The coordination numbers of Si transition from four-fold to six-fold and eventually reach eight-fold coordination at 135 GPa.The enhanced pressure causes the decrease of the diffusion coefficients and the increase of the viscosities of(Mg,Fe)SiO_(3).The increased temperatures slightly decrease the coordination numbers and viscosities,as well as obviously increase the diffusion coefficients and electrical conductivities of(Mg,Fe)SiO_(3).Additionally,iron doping facilitates the diffusion of Si and O,reduces the viscosities,and enhances the electrical conductivities of(Mg,Fe)SiO_(3).These findings advance fundamental understanding of the structural and transport properties of(Mg,Fe)SiO_(3) under high temperature and high pressure,which provide novel insights for unraveling the complexities of geological processes within the Earth's mantle.
基金funded by the National Natural Science Foundation of China(General Program:No.52074314,No.U19B6003-05)National Key Research and Development Program of China(2019YFA0708303-05)。
文摘Accurate prediction of formation pore pressure is essential to predict fluid flow and manage hydrocarbon production in petroleum engineering.Recent deep learning technique has been receiving more interest due to the great potential to deal with pore pressure prediction.However,most of the traditional deep learning models are less efficient to address generalization problems.To fill this technical gap,in this work,we developed a new adaptive physics-informed deep learning model with high generalization capability to predict pore pressure values directly from seismic data.Specifically,the new model,named CGP-NN,consists of a novel parametric features extraction approach(1DCPP),a stacked multilayer gated recurrent model(multilayer GRU),and an adaptive physics-informed loss function.Through machine training,the developed model can automatically select the optimal physical model to constrain the results for each pore pressure prediction.The CGP-NN model has the best generalization when the physicsrelated metricλ=0.5.A hybrid approach combining Eaton and Bowers methods is also proposed to build machine-learnable labels for solving the problem of few labels.To validate the developed model and methodology,a case study on a complex reservoir in Tarim Basin was further performed to demonstrate the high accuracy on the pore pressure prediction of new wells along with the strong generalization ability.The adaptive physics-informed deep learning approach presented here has potential application in the prediction of pore pressures coupled with multiple genesis mechanisms using seismic data.
基金supported by the Doctoral Research Foundation of Bohai University (05013/0520bs006)the Science and Technology Project of“Unveiling and Commanding”Liaoning Province (2021JH1/10400033)the Scientific Research Project from Education Department of Liaoning Province (LJ2020010)。
文摘Enzymatic hydrolysis of proteins can enhance their emulsifying properties and antioxidant activities.However,the problem related to the hydrolysis of proteins was the generation of the bitter taste.Recently,high hydrostatic pressure(HHP)treatment has attracted much interest and has been used in several studies on protein modification.Hence,the study aimed to investigate the effects of enzymatic hydrolysis by Corolase PP under different pressure treatments(0.1,100,200,and 300 MPa for 1-5 h at 50℃)on the emulsifying property,antioxidant activity,and bitterness of soybean protein isolate hydrolysate(SPIH).As observed,the hydrolysate obtained at 200 MPa for 4 h had the highest emulsifying activity index(47.49 m^(2)/g)and emulsifying stability index(92.98%),and it had higher antioxidant activities(44.77%DPPH free radical scavenging activity,31.12%superoxide anion radical scavenging activity,and 61.50%copper ion chelating activity).At the same time,the enhancement of emulsion stability was related to the increase of zeta potential and the decrease of mean particle size.In addition,the hydrolysate obtained at 200 MPa for 4 h had a lower bitterness value and showed better palatability.This study has a broad application prospect in developing food ingredients and healthy foods.
基金supported by National Key R&D Program of China(No.2022YFC3004705)the National Natural Science Foundation of China(Nos.52074280,52227901 and 52204249)National Natural Science Foundation of China Youth Fund(No.52104230).
文摘Effective monitoring of the structural health of combined coal-rock under complex geological conditions by pressure stimulated currents(PSCs)has great potential for the understanding of dynamic disasters in underground engineering.To reveal the effect of this way,the uniaxial compression experiments with PSC monitoring were conducted on three types of coal-rock combination samples with different strength combinations.The mechanism explanation of PSCs are investigated by resistivity test,atomic force microscopy(AFM)and computed tomography(CT)methods,and a PSC flow model based on progressive failure process is proposed.The influence of strength combinations on PSCs in the progressive failure process are emphasized.The results show the PSC responses between rock part,coal part and the two components are different,which are affected by multi-scale fracture characteristics and electrical properties.As the rock strength decreases,the progressive failure process changes obviously with the influence range of interface constraint effect decreasing,resulting in the different responses of PSC strength and direction in different parts to fracture behaviors.The PSC flow model is initially validated by the relationship between the accumulated charges of different parts.The results are expected to provide a new reference and method for mining design and roadway quality assessment.
基金the support of the National Natural Science Foundation of China grant number 51776175。
文摘The regulation of the burning rate pressure exponent for the ammonium perchlorate/hydroxylterminated polybutadiene/aluminum(AP/HTPB/Al)composite propellants under high pressures is a crucial step for its application in high-pressure solid rocket motors.In this work,the combustion characteristics of AP/HTPB/Al composite propellants containing ferrocene-based catalysts were investigated,including the burning rate,thermal behavior,the local heat transfer,and temperature profile in the range of 7-28 MPa.The results showed that the exponent breaks were still observed in the propellants after the addition of positive catalysts(Ce-Fc-MOF),the burning rate inhibitor((Ferrocenylmethyl)trimethylammonium bromide,Fc Br)and the mixture of Fc Br/catocene(GFP).However,the characteristic pressure has increased,and the exponent decreased from 1.14 to 0.66,0.55,and 0.48 when the addition of Ce-FcMOF,Fc Br and Fc Br/GFP in the propellants.In addition,the temperature in the first decomposition stage was increased by 7.50℃ and 11.40℃ for the AP/Fc Br mixture and the AP/Fc Br/GFP mixture,respectively,compared to the pure AP.On the other hand,the temperature in the second decomposition stage decreased by 48.30℃ and 81.70℃ for AP/Fc Br and AP/Fc Br/GFP mixtures,respectively.It was also found that Fc Br might generate ammonia to cover the AP surface.In this case,a reaction between the methyl in Fc Br and perchloric acid caused more ammonia to appear at the AP surface,resulting in the suppression of ammonia desorption.In addition,the coarse AP particles on the quenched surface were of a concave shape relative to the binder matrix under low and high pressures when the catalysts were added.In the process,the decline at the AP/HTPB interface was only exhibited in the propellant with the addition of Ce-Fc-MOF.The ratio of the gas-phase temperature gradient of the propellants containing catalysts was reduced significantly below and above the characteristic pressure,rather than 3.6 times of the difference in the blank propellant.Overall,the obtained results demonstrated that the pressure exponent could be effectively regulated and controlled by adjusting the propellant local heat and mass transfer under high and low pressures.
基金Project supported by the National Natural Science Foundation of China (Grant No.42074139)the Natural Science Foundation of Jilin Province,China (Grant No.20210101140JC)。
文摘In-situ stress is a common stress in the exploration and development of oil reservoirs. Therefore, it is of great significance to study the propagation characteristics of borehole acoustic waves in fluid-saturated porous media under stress.Based on the acoustoelastic theory of fluid-saturated porous media, the field equation of fluid-saturated porous media under the conditions of confining pressure and pore pressure and the acoustic field formula of multipole source excitation in open hole are given. The influences of pore pressure and confining pressure on guided waves of multipole borehole acoustic field in fluid-saturated porous media are investigated. The numerical results show that the phase velocity and excitation intensity of guided wave increase significantly under the confining pressure. For a given confining pressure, the phase velocity of the guided wave decreases with pore pressure increasing. The excitation intensity of guided wave increases at low frequency and then decreases at high frequency with pore pressure increasing, except for that of Stoneley wave which decreases in the whole frequency range. These results will help us get an insight into the influences of confining pressure and pore pressure on the acoustic field of multipole source in borehole around fluid-saturated porous media.
基金the National Natural Science Foundation of China(Grant Nos.42272041,41902034,52302043,12304015,52302043,and 12011530063)the National Major Science Facility Synergetic Extreme Condition User Facility Achievement Transformation Platform Construction(Grant No.2021FGWCXNLJSKJ01)+2 种基金the China Postdoctoral Science Foundation(Grant Nos.2022M720054 and 2023T160257)the National Key Research and Development Program of China(Grant No.2022YFB3706602)the Jilin Univer-sity High-level Innovation Team Foundation,China(Grant No.2021TD-05).
文摘Deformation can change the transition pathway of materials under high pressure,thus significantly affects physical and chemical properties of matters.However,accurate pressure calibration under deformation is challenging and thereby causes relatively large pressure uncertainties in deformation experiments,resulting in the synthesis of complex multiphase materials.Here,pressure generations of three types of deformation assemblies were well calibrated in a Walker-type largevolume press(LVP)by electrical resistance measurements combined with finite element simulations(FESs).Hard Al_(2)O_(3) or diamond pistons in shear and uniaxial deformation assemblies significantly increase the efficiency of pressure generation compared with the conventional quasi-hydrostatic assembly.The uniaxial deformation assembly using flat diamond pistons possesses the highest efficiency in these deformation assemblies.This finding is further confirmed by stress distribution analysis based on FESs.With this deformation assembly,we found shear can effectively promote the transformation of C60 into diamond under high pressure and realized the synthesis of phase-pure diamond at relatively moderate pressure and temperature conditions.The present developed techniques will help improve pressure efficiencies in LVP and explore the new physical and chemical properties of materials under deformation in both science and technology.
基金supported by the National Natural Science Foundation of China(Nos.42272195 and 42130802)supported by the Key Applied Science and Technology Project of PetroChina(No.2023ZZ18)the Major Science and Technology Project of Changqing Oilfield(No.2023DZZ01).
文摘Deep coalbed methane(DCBM),an unconventional gas reservoir,has undergone significant advancements in recent years,sparking a growing interest in assessing pore pressure dynamics within these reservoirs.While some production data analysis techniques have been adapted from conventional oil and gas wells,there remains a gap in the understanding of pore pressure generation and evolution,particularly in wells subjected to large-scale hydraulic fracturing.To address this gap,a novel technique called excess pore pressure analysis(EPPA)has been introduced to the coal seam gas industry for the first time to our knowledge,which employs dual-phase flow principles based on consolidation theory.This technique focuses on the generation and dissipation for excess pore-water pressure(EPWP)and excess pore-gas pressure(EPGP)in stimulated deep coal reservoirs.Equations have been developed respectively and numerical solutions have been provided using the finite element method(FEM).Application of this model to a representative field example reveals that excess pore pressure arises from rapid loading,with overburden weight transferred under undrained condition due to intense hydraulic fracturing,which significantly redistributes the weight-bearing role from the solid coal structure to the injected fluid and liberated gas within artificial pores over a brief timespan.Furthermore,field application indicates that the dissipation of EPWP and EPGP can be actually considered as the process of well production,where methane and water are extracted from deep coalbed methane wells,leading to consolidation for the artificial reservoirs.Moreover,history matching results demonstrate that the excess-pressure model established in this study provides a better explanation for the declining trends observed in both gas and water production curves,compared to conventional practices in coalbed methane reservoir engineering and petroleum engineering.This research not only enhances the understanding of DCBM reservoir behavior but also offers insights applicable to production analysis in other unconventional resources reliant on hydraulic fracturing.
基金the National Natural Science Foundation of China(Nos.52374218,52174122 and 52374094)Outstanding Youth Fund of Shandong Natural Science Foundation(No.ZR2022YQ49)Taishan Scholar Project in Shandong Province(Nos.tspd20210313 and tsqn202211150).
文摘With the increase of underground engineering construction depth,the phenomenon of surrounding rock sudden failure caused by supporting structure failure occurs frequently.The conventional unloading con-fining pressure(CUCP)test cannot simulate the plastic yielding and instantaneous unloading process of supporting structure to rock.Thus,a high stress loading-instantaneous unloading confining pressure(HSL-IUCP)test method was proposed and applied by considering bolt’s fracture under stress.The wall thickness of confining pressure plates and the material of bolts were changed to realize different confin-ing pressure loading stiffness(CPLS)and lateral maximum allowable deformation(LMAD).The superio-rity of HSL-ICPU method is verified compared with CUCP.The rock failure mechanism caused by sudden failure of supporting structure is obtained.The results show that when CPLS increases from 1.35 to 2.33 GN/m,rock’s peak strength and elastic modulus increase by 25.18%and 23.70%,respectively.The fracture characteristics change from tensile failure to tensile-shear mixed failure.When LMAD decreases from 0.40 to 0.16 mm,rock’s residual strength,peak strain,and residual strain decrease by 91.80%,16.94%,and 21.92%,respectively,and post-peak drop modulus increases by 140.47%.The test results obtained by this method are closer to rock’s real mechanical response characteristics compared with CUCP.
基金Project supported by the National Key Research and Development Program of China (Grant Nos. 2023YFA1406102 and 2022YFA1602603)the National Natural Science Foundation of China (Grant Nos. 12374049 and 12174395)+2 种基金the China Postdoctoral Science Foundation (Grant No. 2023M743542)Hefei Institutes of Physical Science,Chinese Academy of Sciences the Director’s Fundation of (Grant No. YZJJ2024QN41)the Basic Research Program of the Chinese Academy of Sciences Based on Major Scientific Infrastructures (Grant No. JZHKYPT-2021-08)。
文摘Motivated by the recent discovery of unconventional superconductivity around a magnetic quantum critical point in pressurized CeSb_(2),here we present a high-pressure study of an isostructural antiferromagnetic(AFM) SmSb_(2) through electrical transport and synchrotron x-ray diffraction measurements.At P_(C)~2.5 GPa,we found a pressure-induced magnetic phase transition accompanied by a Cmca→P4/nmm structural phase transition.In the pristine AFM phase below P_(C),the AFM transition temperature of SmSb_(2) is insensitive to pressure;in the emergent magnetic phase above P_(C),however,the magnetic critical temperature increases rapidly with increasing pressure.In addition,at ambient pressure,the magnetoresistivity(MR) of SmSb_(2) increases suddenly upon cooling below the AFM transition temperature and presents linear nonsaturating behavior under high field at 2 K.With increasing pressure above P_(C),the MR behavior remains similar to that observed at ambient pressure,both in terms of temperature-and field-dependent MR.This leads us to argue an AFM-like state for SmSb_(2) above P_(C).Within the investigated pressure of up to 45.3 GPa and the temperature of down to 1.8 K,we found no signature of superconductivity in SmSb_(2).