The belief rule-based(BRB)system has been popular in complexity system modeling due to its good interpretability.However,the current mainstream optimization methods of the BRB systems only focus on modeling accuracy b...The belief rule-based(BRB)system has been popular in complexity system modeling due to its good interpretability.However,the current mainstream optimization methods of the BRB systems only focus on modeling accuracy but ignore the interpretability.The single-objective optimization strategy has been applied in the interpretability-accuracy trade-off by inte-grating accuracy and interpretability into an optimization objec-tive.But the integration has a greater impact on optimization results with strong subjectivity.Thus,a multi-objective optimiza-tion framework in the modeling of BRB systems with inter-pretability-accuracy trade-off is proposed in this paper.Firstly,complexity and accuracy are taken as two independent opti-mization goals,and uniformity as a constraint to give the mathe-matical description.Secondly,a classical multi-objective opti-mization algorithm,nondominated sorting genetic algorithm II(NSGA-II),is utilized as an optimization tool to give a set of BRB systems with different accuracy and complexity.Finally,a pipeline leakage detection case is studied to verify the feasibility and effectiveness of the developed multi-objective optimization.The comparison illustrates that the proposed multi-objective optimization framework can effectively avoid the subjectivity of single-objective optimization,and has capability of joint optimiz-ing the structure and parameters of BRB systems with inter-pretability-accuracy trade-off.展开更多
The precise characterization of hypersonic glide vehicle(HGV) maneuver laws in complex flight scenarios still faces challenges. Non-stationary changes in flight state due to abrupt changes in maneuver modes place high...The precise characterization of hypersonic glide vehicle(HGV) maneuver laws in complex flight scenarios still faces challenges. Non-stationary changes in flight state due to abrupt changes in maneuver modes place high demands on the accuracy of modeling methods. To address this issue, a novel maneuver laws modeling and analysis method based on higher order multi-resolution dynamic mode decomposition(HMDMD) is proposed in this work. A joint time-space-frequency decomposition of the vehicle's state sequence in the complex flight scenario is achieved with the higher order Koopman assumption and standard multi-resolution dynamic mode decomposition, and an approximate dynamic model is established. The maneuver laws can be reconstructed and analyzed with extracted multi-scale spatiotemporal modes with clear physical meaning. Based on the dynamic model of HGV, two flight scenarios are established with constant angle of attack and complex maneuver laws, respectively. Simulation results demonstrate that the maneuver laws obtained using the HMDMD method are highly consistent with those derived from the real dynamic model, the modeling accuracy is better than other common modeling methods, and the method has strong interpretability.展开更多
System upgrades in unmanned systems have made Unmanned Aerial Vehicle(UAV)-based patrolling and monitoring a preferred solution for ocean surveillance.However,dynamic environments and large-scale deployments pose sign...System upgrades in unmanned systems have made Unmanned Aerial Vehicle(UAV)-based patrolling and monitoring a preferred solution for ocean surveillance.However,dynamic environments and large-scale deployments pose significant challenges for efficient decision-making,necessitating a modular multiagent control system.Deep Reinforcement Learning(DRL)and Decision Tree(DT)have been utilized for these complex decision-making tasks,but each has its limitations:DRL is highly adaptive but lacks interpretability,while DT is inherently interpretable but has limited adaptability.To overcome these challenges,we propose the Adaptive Interpretable Decision Tree(AIDT),an evolutionary-based algorithm that is both adaptable to diverse environmental settings and highly interpretable in its decision-making processes.We first construct a Markov decision process(MDP)-based simulation environment using the Cooperative Submarine Search task as a representative scenario for training and testing the proposed method.Specifically,we use the heat map as a state variable to address the issue of multi-agent input state proliferation.Next,we introduce the curiosity-guiding intrinsic reward to encourage comprehensive exploration and enhance algorithm performance.Additionally,we incorporate decision tree size as an influence factor in the adaptation process to balance task completion with computational efficiency.To further improve the generalization capability of the decision tree,we apply a normalization method to ensure consistent processing of input states.Finally,we validate the proposed algorithm in different environmental settings,and the results demonstrate both its adaptability and interpretability.展开更多
A method of system structural analysis based on decision making trial and evaluation laboratory together with interpretative structural modeling(DEMATEL-ISM) and entropy is proposed to clarify system structure of comm...A method of system structural analysis based on decision making trial and evaluation laboratory together with interpretative structural modeling(DEMATEL-ISM) and entropy is proposed to clarify system structure of communication networks and analyze mutual influencing degree between different networks.Mutual influencing degree and importance degree of elements are both considered to determine weights of elements,and the entropy of expert judgment results is used to omit unimportant influence relation and simplify system structure.Structural analysis on communication networks system shows that the proposed method can quantificationally present weights and mutual influencing degree of elements,and reasonably simplify system structure.The results indicate the rationality and feasibility of the method.展开更多
In this paper,the author defined the interpretation system of geoparks,studied the designing princeples and methods of the interpretation identification system,including the information,content and appearance. Further...In this paper,the author defined the interpretation system of geoparks,studied the designing princeples and methods of the interpretation identification system,including the information,content and appearance. Furthermore,the designing of the interpretation identification system designing of the Hanas National Geopark was conducted as an empirical study,展开更多
By analyzing the existing research achievements on the geopark interpretation system,this article has brought up a new explanation of the system from the aspect of easy-understood principle.We try to present our touri...By analyzing the existing research achievements on the geopark interpretation system,this article has brought up a new explanation of the system from the aspect of easy-understood principle.We try to present our tourists with geoheritage,natural and cultural resources by various medium,so that people could know more about geosciences during the tour.In the end,geoheritage protection is enhanced by such展开更多
This study was conducted over a twelve-month period of study at Yuntaishan Global Geopark centered to assess the validity of interpretation system for the visitors there.And the author designed four sets of questionna...This study was conducted over a twelve-month period of study at Yuntaishan Global Geopark centered to assess the validity of interpretation system for the visitors there.And the author designed four sets of questionnaires for it,one for Chinese visitors, one for English-speaking visitors,one for the interpreters and one for management staffs of Yuntaishan Global Geopark.1149 Chinese visitors,15 English-speaking visitors,63 interpreters and展开更多
In this paper, the structure characteristics of open complex giant systems are concretely analysed in depth, thus the view and its significance to support the meta synthesis engineering with manifold knowledge models...In this paper, the structure characteristics of open complex giant systems are concretely analysed in depth, thus the view and its significance to support the meta synthesis engineering with manifold knowledge models are clarified. Furthermore, the knowledge based multifaceted modeling methodology for open complex giant systems is emphatically studied. The major points are as follows: (1) nonlinear mechanism and general information partition law; (2) from the symmetry and similarity to the acquisition of construction knowledge; (3) structures for hierarchical and nonhierarchical organizations; (4) the integration of manifold knowledge models; (5) the methodology of knowledge based multifaceted modeling.展开更多
Nitrogen-rich heterocyclic energetic compounds(NRHECs)and their salts have witnessed widespread synthesis in recent years.The substantial energy-density content within these compounds can lead to potentially dangerous...Nitrogen-rich heterocyclic energetic compounds(NRHECs)and their salts have witnessed widespread synthesis in recent years.The substantial energy-density content within these compounds can lead to potentially dangerous explosive reactions when subjected to external stimuli such as electrical discharge.Therefore,developing a reliable model for predicting their electrostatic discharge sensitivity(ESD)becomes imperative.This study proposes a novel and straightforward model based on the presence of specific groups(-NH_(2) or-NH-,-N=N^(+)-O^(-)and-NNO_(2),-ONO_(2) or-NO_(2))under certain conditions to assess the ESD of NRHECs and their salts,employing interpretable structural parameters.Utilizing a comprehensive dataset comprising 54 ESD measurements of NRHECs and their salts,divided into 49/5 training/test sets,the model achieves promising results.The Root Mean Square Error(RMSE),Mean Absolute Error(MAE),and Maximum Error for the training set are reported as 0.16 J,0.12 J,and 0.5 J,respectively.Notably,the ratios RMSE(training)/RMSE(test),MAE(training)/MAE(test),and Max Error(training)/Max Error(test)are all greater than 1.0,indicating the robust predictive capabilities of the model.The presented model demonstrates its efficacy in providing a reliable assessment of ESD for the targeted NRHECs and their salts,without the need for intricate computer codes or expert involvement.展开更多
A new approach is proposed in this study for accountable capability improvement based on interpretable capability evaluation using the belief rule base(BRB).Firstly,a capability evaluation model is constructed and opt...A new approach is proposed in this study for accountable capability improvement based on interpretable capability evaluation using the belief rule base(BRB).Firstly,a capability evaluation model is constructed and optimized.Then,the key sub-capabilities are identified by quantitatively calculating the contributions made by each sub-capability to the overall capability.Finally,the overall capability is improved by optimizing the identified key sub-capabilities.The theoretical contributions of the proposed approach are as follows.(i)An interpretable capability evaluation model is constructed by employing BRB which can provide complete access to decision-makers.(ii)Key sub-capabilities are identified according to the quantitative contribution analysis results.(iii)Accountable capability improvement is carried out by only optimizing the identified key sub-capabilities.Case study results show that“Surveillance”,“Positioning”,and“Identification”are identified as key sub-capabilities with a summed contribution of 75.55%in an analytical and deducible fashion based on the interpretable capability evaluation model.As a result,the overall capability is improved by optimizing only the identified key sub-capabilities.The overall capability can be greatly improved from 59.20%to 81.80%with a minimum cost of 397.Furthermore,this paper also investigates how optimizing the BRB with more collected data would affect the evaluation results:only optimizing“Surveillance”and“Positioning”can also improve the overall capability to 81.34%with a cost of 370,which thus validates the efficiency of the proposed approach.展开更多
Landslide susceptibility mapping is a crucial tool for disaster prevention and management.The performance of conventional data-driven model is greatly influenced by the quality of the samples data.The random selection...Landslide susceptibility mapping is a crucial tool for disaster prevention and management.The performance of conventional data-driven model is greatly influenced by the quality of the samples data.The random selection of negative samples results in the lack of interpretability throughout the assessment process.To address this limitation and construct a high-quality negative samples database,this study introduces a physics-informed machine learning approach,combining the random forest model with Scoops 3D,to optimize the negative samples selection strategy and assess the landslide susceptibility of the study area.The Scoops 3D is employed to determine the factor of safety value leveraging Bishop’s simplified method.Instead of conventional random selection,negative samples are extracted from the areas with a high factor of safety value.Subsequently,the results of conventional random forest model and physics-informed data-driven model are analyzed and discussed,focusing on model performance and prediction uncertainty.In comparison to conventional methods,the physics-informed model,set with a safety area threshold of 3,demonstrates a noteworthy improvement in the mean AUC value by 36.7%,coupled with a reduced prediction uncertainty.It is evident that the determination of the safety area threshold exerts an impact on both prediction uncertainty and model performance.展开更多
This paper briefly presents a study of the relationship between English and Chinese, which is put forward from the point of the equivalence in both languages. By observing and analyzing the examples in the parts of fu...This paper briefly presents a study of the relationship between English and Chinese, which is put forward from the point of the equivalence in both languages. By observing and analyzing the examples in the parts of full equivalence and partial equivalence, we can surely conclude that English and Chinese have close relationship with each other. However, the equivalence reflected in the languages is, to some extent, greatly influenced by their respective culture, which still needs us to do more research about it.展开更多
The Song of Songs has been the subject of much speculation and controversy since rabbinic times.Some view it as a collection of erotic love poetry,while many other interpreters perceive it as spiritual allegory.This p...The Song of Songs has been the subject of much speculation and controversy since rabbinic times.Some view it as a collection of erotic love poetry,while many other interpreters perceive it as spiritual allegory.This paper analyzes the Song from two dimensions:an anthology of love poems in the literary world and a canonized scripture in the historical world,attempting to explore its growing path from a secular collection of poems to the sacred Song in the Holy Bible.展开更多
Discernment of seismic soil liquefaction is a complex and non-linear procedure that is affected by diversified factors of uncertainties and complexity.The Bayesian belief network(BBN)is an effective tool to present a ...Discernment of seismic soil liquefaction is a complex and non-linear procedure that is affected by diversified factors of uncertainties and complexity.The Bayesian belief network(BBN)is an effective tool to present a suitable framework to handle insights into such uncertainties and cause–effect relationships.The intention of this study is to use a hybrid approach methodology for the development of BBN model based on cone penetration test(CPT)case history records to evaluate seismic soil liquefaction potential.In this hybrid approach,naive model is developed initially only by an interpretive structural modeling(ISM)technique using domain knowledge(DK).Subsequently,some useful information about the naive model are embedded as DK in the K2 algorithm to develop a BBN-K2 and DK model.The results of the BBN models are compared and validated with the available artificial neural network(ANN)and C4.5 decision tree(DT)models and found that the BBN model developed by hybrid approach showed compatible and promising results for liquefaction potential assessment.The BBN model developed by hybrid approach provides a viable tool for geotechnical engineers to assess sites conditions susceptible to seismic soil liquefaction.This study also presents sensitivity analysis of the BBN model based on hybrid approach and the most probable explanation of liquefied sites,owing to know the most likely scenario of the liquefaction phenomenon.展开更多
语言是信息的载体和储存器(imformation carrier and container)。阅读理解(reading comprchension)的实质就是对书面语言符号进行释义(interpret)以获取它所传递和储存的信息。模糊语言所包含的信息量大,往往产生岐义(ambiguity)、隐晦...语言是信息的载体和储存器(imformation carrier and container)。阅读理解(reading comprchension)的实质就是对书面语言符号进行释义(interpret)以获取它所传递和储存的信息。模糊语言所包含的信息量大,往往产生岐义(ambiguity)、隐晦(obscurity)、游移不定(indefiniteness)和难以捉摸(elusiveness),给释义过程带来或大或小的困难。展开更多
The intuitionistic fuzzy set(IFS) based on fuzzy theory,which is of high efficiency to solve the fuzzy problem, has been introduced by Atanassov. Subsequently, he pushed the research one step further from the IFS to t...The intuitionistic fuzzy set(IFS) based on fuzzy theory,which is of high efficiency to solve the fuzzy problem, has been introduced by Atanassov. Subsequently, he pushed the research one step further from the IFS to the interval valued intuitionistic fuzzy set(IVIFS). On the basis of fuzzy set(FS), the IFS is a generalization concept. And the IFS is generalized to the IVIFS.In this paper, the definition of the sixth Cartesian product over IVIFSs is first introduced and its some properties are explored.We prove some equalities based on the operation and the relation over IVIFSs. Finally, we present one geometric interpretation and a numerical example of the sixth Cartesian product over IVIFSs.展开更多
基金supported by the National Natural Science Foundation of China(71901212)the Science and Technology Innovation Program of Hunan Province(2020RC4046).
文摘The belief rule-based(BRB)system has been popular in complexity system modeling due to its good interpretability.However,the current mainstream optimization methods of the BRB systems only focus on modeling accuracy but ignore the interpretability.The single-objective optimization strategy has been applied in the interpretability-accuracy trade-off by inte-grating accuracy and interpretability into an optimization objec-tive.But the integration has a greater impact on optimization results with strong subjectivity.Thus,a multi-objective optimiza-tion framework in the modeling of BRB systems with inter-pretability-accuracy trade-off is proposed in this paper.Firstly,complexity and accuracy are taken as two independent opti-mization goals,and uniformity as a constraint to give the mathe-matical description.Secondly,a classical multi-objective opti-mization algorithm,nondominated sorting genetic algorithm II(NSGA-II),is utilized as an optimization tool to give a set of BRB systems with different accuracy and complexity.Finally,a pipeline leakage detection case is studied to verify the feasibility and effectiveness of the developed multi-objective optimization.The comparison illustrates that the proposed multi-objective optimization framework can effectively avoid the subjectivity of single-objective optimization,and has capability of joint optimiz-ing the structure and parameters of BRB systems with inter-pretability-accuracy trade-off.
基金supported by the National Natural Science Foundation of China (Grant No. 12302056)the Postdoctoral Fellowship Program of CPSF:GZC20233445。
文摘The precise characterization of hypersonic glide vehicle(HGV) maneuver laws in complex flight scenarios still faces challenges. Non-stationary changes in flight state due to abrupt changes in maneuver modes place high demands on the accuracy of modeling methods. To address this issue, a novel maneuver laws modeling and analysis method based on higher order multi-resolution dynamic mode decomposition(HMDMD) is proposed in this work. A joint time-space-frequency decomposition of the vehicle's state sequence in the complex flight scenario is achieved with the higher order Koopman assumption and standard multi-resolution dynamic mode decomposition, and an approximate dynamic model is established. The maneuver laws can be reconstructed and analyzed with extracted multi-scale spatiotemporal modes with clear physical meaning. Based on the dynamic model of HGV, two flight scenarios are established with constant angle of attack and complex maneuver laws, respectively. Simulation results demonstrate that the maneuver laws obtained using the HMDMD method are highly consistent with those derived from the real dynamic model, the modeling accuracy is better than other common modeling methods, and the method has strong interpretability.
文摘System upgrades in unmanned systems have made Unmanned Aerial Vehicle(UAV)-based patrolling and monitoring a preferred solution for ocean surveillance.However,dynamic environments and large-scale deployments pose significant challenges for efficient decision-making,necessitating a modular multiagent control system.Deep Reinforcement Learning(DRL)and Decision Tree(DT)have been utilized for these complex decision-making tasks,but each has its limitations:DRL is highly adaptive but lacks interpretability,while DT is inherently interpretable but has limited adaptability.To overcome these challenges,we propose the Adaptive Interpretable Decision Tree(AIDT),an evolutionary-based algorithm that is both adaptable to diverse environmental settings and highly interpretable in its decision-making processes.We first construct a Markov decision process(MDP)-based simulation environment using the Cooperative Submarine Search task as a representative scenario for training and testing the proposed method.Specifically,we use the heat map as a state variable to address the issue of multi-agent input state proliferation.Next,we introduce the curiosity-guiding intrinsic reward to encourage comprehensive exploration and enhance algorithm performance.Additionally,we incorporate decision tree size as an influence factor in the adaptation process to balance task completion with computational efficiency.To further improve the generalization capability of the decision tree,we apply a normalization method to ensure consistent processing of input states.Finally,we validate the proposed algorithm in different environmental settings,and the results demonstrate both its adaptability and interpretability.
基金Project(20141996018)supported by Aerospace Science Foundation of ChinaProject(2012JZ8005)supported by the Natural Science Fundamental Research Planned Project of Shanxi Province,China
文摘A method of system structural analysis based on decision making trial and evaluation laboratory together with interpretative structural modeling(DEMATEL-ISM) and entropy is proposed to clarify system structure of communication networks and analyze mutual influencing degree between different networks.Mutual influencing degree and importance degree of elements are both considered to determine weights of elements,and the entropy of expert judgment results is used to omit unimportant influence relation and simplify system structure.Structural analysis on communication networks system shows that the proposed method can quantificationally present weights and mutual influencing degree of elements,and reasonably simplify system structure.The results indicate the rationality and feasibility of the method.
文摘In this paper,the author defined the interpretation system of geoparks,studied the designing princeples and methods of the interpretation identification system,including the information,content and appearance. Furthermore,the designing of the interpretation identification system designing of the Hanas National Geopark was conducted as an empirical study,
文摘By analyzing the existing research achievements on the geopark interpretation system,this article has brought up a new explanation of the system from the aspect of easy-understood principle.We try to present our tourists with geoheritage,natural and cultural resources by various medium,so that people could know more about geosciences during the tour.In the end,geoheritage protection is enhanced by such
文摘This study was conducted over a twelve-month period of study at Yuntaishan Global Geopark centered to assess the validity of interpretation system for the visitors there.And the author designed four sets of questionnaires for it,one for Chinese visitors, one for English-speaking visitors,one for the interpreters and one for management staffs of Yuntaishan Global Geopark.1149 Chinese visitors,15 English-speaking visitors,63 interpreters and
文摘In this paper, the structure characteristics of open complex giant systems are concretely analysed in depth, thus the view and its significance to support the meta synthesis engineering with manifold knowledge models are clarified. Furthermore, the knowledge based multifaceted modeling methodology for open complex giant systems is emphatically studied. The major points are as follows: (1) nonlinear mechanism and general information partition law; (2) from the symmetry and similarity to the acquisition of construction knowledge; (3) structures for hierarchical and nonhierarchical organizations; (4) the integration of manifold knowledge models; (5) the methodology of knowledge based multifaceted modeling.
文摘Nitrogen-rich heterocyclic energetic compounds(NRHECs)and their salts have witnessed widespread synthesis in recent years.The substantial energy-density content within these compounds can lead to potentially dangerous explosive reactions when subjected to external stimuli such as electrical discharge.Therefore,developing a reliable model for predicting their electrostatic discharge sensitivity(ESD)becomes imperative.This study proposes a novel and straightforward model based on the presence of specific groups(-NH_(2) or-NH-,-N=N^(+)-O^(-)and-NNO_(2),-ONO_(2) or-NO_(2))under certain conditions to assess the ESD of NRHECs and their salts,employing interpretable structural parameters.Utilizing a comprehensive dataset comprising 54 ESD measurements of NRHECs and their salts,divided into 49/5 training/test sets,the model achieves promising results.The Root Mean Square Error(RMSE),Mean Absolute Error(MAE),and Maximum Error for the training set are reported as 0.16 J,0.12 J,and 0.5 J,respectively.Notably,the ratios RMSE(training)/RMSE(test),MAE(training)/MAE(test),and Max Error(training)/Max Error(test)are all greater than 1.0,indicating the robust predictive capabilities of the model.The presented model demonstrates its efficacy in providing a reliable assessment of ESD for the targeted NRHECs and their salts,without the need for intricate computer codes or expert involvement.
基金supported by the National Natural Science Foundation of China(72471067,72431011,72471238,72231011,62303474,72301286)the Fundamental Research Funds for the Provincial Universities of Zhejiang(GK239909299001-010).
文摘A new approach is proposed in this study for accountable capability improvement based on interpretable capability evaluation using the belief rule base(BRB).Firstly,a capability evaluation model is constructed and optimized.Then,the key sub-capabilities are identified by quantitatively calculating the contributions made by each sub-capability to the overall capability.Finally,the overall capability is improved by optimizing the identified key sub-capabilities.The theoretical contributions of the proposed approach are as follows.(i)An interpretable capability evaluation model is constructed by employing BRB which can provide complete access to decision-makers.(ii)Key sub-capabilities are identified according to the quantitative contribution analysis results.(iii)Accountable capability improvement is carried out by only optimizing the identified key sub-capabilities.Case study results show that“Surveillance”,“Positioning”,and“Identification”are identified as key sub-capabilities with a summed contribution of 75.55%in an analytical and deducible fashion based on the interpretable capability evaluation model.As a result,the overall capability is improved by optimizing only the identified key sub-capabilities.The overall capability can be greatly improved from 59.20%to 81.80%with a minimum cost of 397.Furthermore,this paper also investigates how optimizing the BRB with more collected data would affect the evaluation results:only optimizing“Surveillance”and“Positioning”can also improve the overall capability to 81.34%with a cost of 370,which thus validates the efficiency of the proposed approach.
基金Project(G2022165004L)supported by the High-end Foreign Expert Introduction Program,ChinaProject(2021XM3008)supported by the Special Foundation of Postdoctoral Support Program,Chongqing,China+1 种基金Project(2018-ZL-01)supported by the Sichuan Transportation Science and Technology Project,ChinaProject(HZ2021001)supported by the Chongqing Municipal Education Commission,China。
文摘Landslide susceptibility mapping is a crucial tool for disaster prevention and management.The performance of conventional data-driven model is greatly influenced by the quality of the samples data.The random selection of negative samples results in the lack of interpretability throughout the assessment process.To address this limitation and construct a high-quality negative samples database,this study introduces a physics-informed machine learning approach,combining the random forest model with Scoops 3D,to optimize the negative samples selection strategy and assess the landslide susceptibility of the study area.The Scoops 3D is employed to determine the factor of safety value leveraging Bishop’s simplified method.Instead of conventional random selection,negative samples are extracted from the areas with a high factor of safety value.Subsequently,the results of conventional random forest model and physics-informed data-driven model are analyzed and discussed,focusing on model performance and prediction uncertainty.In comparison to conventional methods,the physics-informed model,set with a safety area threshold of 3,demonstrates a noteworthy improvement in the mean AUC value by 36.7%,coupled with a reduced prediction uncertainty.It is evident that the determination of the safety area threshold exerts an impact on both prediction uncertainty and model performance.
文摘This paper briefly presents a study of the relationship between English and Chinese, which is put forward from the point of the equivalence in both languages. By observing and analyzing the examples in the parts of full equivalence and partial equivalence, we can surely conclude that English and Chinese have close relationship with each other. However, the equivalence reflected in the languages is, to some extent, greatly influenced by their respective culture, which still needs us to do more research about it.
文摘The Song of Songs has been the subject of much speculation and controversy since rabbinic times.Some view it as a collection of erotic love poetry,while many other interpreters perceive it as spiritual allegory.This paper analyzes the Song from two dimensions:an anthology of love poems in the literary world and a canonized scripture in the historical world,attempting to explore its growing path from a secular collection of poems to the sacred Song in the Holy Bible.
基金Projects(2016YFE0200100,2018YFC1505300-5.3)supported by the National Key Research&Development Plan of ChinaProject(51639002)supported by the Key Program of National Natural Science Foundation of China
文摘Discernment of seismic soil liquefaction is a complex and non-linear procedure that is affected by diversified factors of uncertainties and complexity.The Bayesian belief network(BBN)is an effective tool to present a suitable framework to handle insights into such uncertainties and cause–effect relationships.The intention of this study is to use a hybrid approach methodology for the development of BBN model based on cone penetration test(CPT)case history records to evaluate seismic soil liquefaction potential.In this hybrid approach,naive model is developed initially only by an interpretive structural modeling(ISM)technique using domain knowledge(DK).Subsequently,some useful information about the naive model are embedded as DK in the K2 algorithm to develop a BBN-K2 and DK model.The results of the BBN models are compared and validated with the available artificial neural network(ANN)and C4.5 decision tree(DT)models and found that the BBN model developed by hybrid approach showed compatible and promising results for liquefaction potential assessment.The BBN model developed by hybrid approach provides a viable tool for geotechnical engineers to assess sites conditions susceptible to seismic soil liquefaction.This study also presents sensitivity analysis of the BBN model based on hybrid approach and the most probable explanation of liquefied sites,owing to know the most likely scenario of the liquefaction phenomenon.
文摘语言是信息的载体和储存器(imformation carrier and container)。阅读理解(reading comprchension)的实质就是对书面语言符号进行释义(interpret)以获取它所传递和储存的信息。模糊语言所包含的信息量大,往往产生岐义(ambiguity)、隐晦(obscurity)、游移不定(indefiniteness)和难以捉摸(elusiveness),给释义过程带来或大或小的困难。
基金supported by the National Natural Science Foundation of China(61373174)
文摘The intuitionistic fuzzy set(IFS) based on fuzzy theory,which is of high efficiency to solve the fuzzy problem, has been introduced by Atanassov. Subsequently, he pushed the research one step further from the IFS to the interval valued intuitionistic fuzzy set(IVIFS). On the basis of fuzzy set(FS), the IFS is a generalization concept. And the IFS is generalized to the IVIFS.In this paper, the definition of the sixth Cartesian product over IVIFSs is first introduced and its some properties are explored.We prove some equalities based on the operation and the relation over IVIFSs. Finally, we present one geometric interpretation and a numerical example of the sixth Cartesian product over IVIFSs.