A method of system structural analysis based on decision making trial and evaluation laboratory together with interpretative structural modeling(DEMATEL-ISM) and entropy is proposed to clarify system structure of comm...A method of system structural analysis based on decision making trial and evaluation laboratory together with interpretative structural modeling(DEMATEL-ISM) and entropy is proposed to clarify system structure of communication networks and analyze mutual influencing degree between different networks.Mutual influencing degree and importance degree of elements are both considered to determine weights of elements,and the entropy of expert judgment results is used to omit unimportant influence relation and simplify system structure.Structural analysis on communication networks system shows that the proposed method can quantificationally present weights and mutual influencing degree of elements,and reasonably simplify system structure.The results indicate the rationality and feasibility of the method.展开更多
以基因、转录、蛋白质等生命组学为主体的生物大数据快速积累和以深度学习为代表的人工智能技术迅猛发展,催生出各种类别的生物大模型(biological large models)。复杂的深度学习架构、巨大的参数量和算力需求、以及海量的预训练数据等...以基因、转录、蛋白质等生命组学为主体的生物大数据快速积累和以深度学习为代表的人工智能技术迅猛发展,催生出各种类别的生物大模型(biological large models)。复杂的深度学习架构、巨大的参数量和算力需求、以及海量的预训练数据等是大模型技术的主要特征。预训练数据类别及参数量一定程度上决定了大模型所具备的能力强弱,而不同的模型架构则可支撑不同类别的下游任务。近两年,围绕DNA/RNA/蛋白质等生物序列与单细胞表达图谱等组学数据分析挖掘、大分子结构预测、新型药物设计和功能机制解析等多种应用场景,涌现了多种通用或专用大模型,展示出其在生物医学研究及转化应用等领域的巨大潜力。本文旨在结合不同类别的生物数据特点和研究应用需求,概述生物数据特征及其用于生物大模型训练的技术方法,并进一步综述现有大模型在生物医学研究及疾病诊疗中的应用进展,为提升生物大模型能力、拓展应用范围提供新的思路。展开更多
基金Project(20141996018)supported by Aerospace Science Foundation of ChinaProject(2012JZ8005)supported by the Natural Science Fundamental Research Planned Project of Shanxi Province,China
文摘A method of system structural analysis based on decision making trial and evaluation laboratory together with interpretative structural modeling(DEMATEL-ISM) and entropy is proposed to clarify system structure of communication networks and analyze mutual influencing degree between different networks.Mutual influencing degree and importance degree of elements are both considered to determine weights of elements,and the entropy of expert judgment results is used to omit unimportant influence relation and simplify system structure.Structural analysis on communication networks system shows that the proposed method can quantificationally present weights and mutual influencing degree of elements,and reasonably simplify system structure.The results indicate the rationality and feasibility of the method.
文摘以基因、转录、蛋白质等生命组学为主体的生物大数据快速积累和以深度学习为代表的人工智能技术迅猛发展,催生出各种类别的生物大模型(biological large models)。复杂的深度学习架构、巨大的参数量和算力需求、以及海量的预训练数据等是大模型技术的主要特征。预训练数据类别及参数量一定程度上决定了大模型所具备的能力强弱,而不同的模型架构则可支撑不同类别的下游任务。近两年,围绕DNA/RNA/蛋白质等生物序列与单细胞表达图谱等组学数据分析挖掘、大分子结构预测、新型药物设计和功能机制解析等多种应用场景,涌现了多种通用或专用大模型,展示出其在生物医学研究及转化应用等领域的巨大潜力。本文旨在结合不同类别的生物数据特点和研究应用需求,概述生物数据特征及其用于生物大模型训练的技术方法,并进一步综述现有大模型在生物医学研究及疾病诊疗中的应用进展,为提升生物大模型能力、拓展应用范围提供新的思路。
文摘目的洪水是影响尾矿库安全的重要因素,明晰洪水对尾矿库的风险传导路径有利于帮助识别关键风险因素,优化防控措施。方法结合文献计量法和专家决策筛选出尾矿库洪水风险的重要影响指标,利用解释结构模型(interpretative structural modeling,ISM)对指标层次进行划分,最后基于事故树分析(fault tree analysis,FTA)解析灾害的演化路径,并提出相应预防措施。结果结果表明:(1)基于文献计量法总共筛选出24个尾矿库洪水风险影响因素,结合平均权重值与专家经验确定10个相对重要的尾矿库洪水风险影响因素;(2)基于ISM计算得出10个影响因素和洪水风险间的相互影响关系,确定尾矿库洪水灾害的直接、间接和最根本影响因素;(3)结合ISM和事故案例,建立尾矿库洪水灾害事故树,通过布尔代数运算得出18种致灾路径和9种预防事故的路径;(4)分析事故树的结构重要度后发现对尾矿库洪水风险影响最大的事件是排洪能力不足、洪峰流量大和初始浸润线埋深浅。结论提出的文献计量法、ISM与FTA相结合的方法不仅实现了客观指标筛选与系统建模的融合,而且为尾矿库防洪实现从“被动应对”向“主动阻断”的转变提供了理论支撑。