Recently,the radial point interpolation meshfree method has gained popularity owing to its advantages in large deformation and discontinuity problems,however,the accuracy of this method depends on many factors and the...Recently,the radial point interpolation meshfree method has gained popularity owing to its advantages in large deformation and discontinuity problems,however,the accuracy of this method depends on many factors and their influences are not fully investigated yet.In this work,three main factors,i.e.,the shape parameters,the influence domain size,and the nodal distribution,on the accuracy of the radial point interpolation method(RPIM)are systematically studied and conclusive results are obtained.First,the effect of shape parameters(R,q)of the multi-quadric basis function on the accuracy of RPIM is examined via global search.A new interpolation error index,closely related to the accuracy of RPIM,is proposed.The distribution of various error indexes on the R q plane shows that shape parameters q[1.2,1.8]and R[0,1.5]can give good results for general 3-D analysis.This recommended range of shape parameters is examined by multiple benchmark examples in 3D solid mechanics.Second,through numerical experiments,an average of 30 40 nodes in the influence domain of a Gauss point is recommended for 3-D solid mechanics.Third,it is observed that the distribution of nodes has significant effect on the accuracy of RPIM although it has little effect on the accuracy of interpolation.Nodal distributions with better uniformity give better results.Furthermore,how the influence domain size and nodal distribution affect the selection of shape parameters and how the nodal distribution affects the choice of influence domain size are also discussed.展开更多
A new seismic ray-tracing method is put forward based on parabolic travel-time interpolation(PTI) method, which is more accurate than the linear travel-time interpolation (LTI) method. Both PTI method and LTI method a...A new seismic ray-tracing method is put forward based on parabolic travel-time interpolation(PTI) method, which is more accurate than the linear travel-time interpolation (LTI) method. Both PTI method and LTI method are used to compute seismic travel-time and ray-path in a 2-D grid cell model. Firstly, some basic concepts are introduced. The calculations of travel-time and ray-path are carried out only at cell boundaries. So, the ray-path is always straight in the same cells with uniform velocity. Two steps are applied in PTI and LTI method, step 1 computes travel-time and step 2 traces ray-path. Then, the derivation of LTI formulas is described. Because of the presence of refraction wave in shot cell, the formula aiming at shot cell is also derived. Finally, PTI method is presented. The calculation of PTI method is more complex than that of LTI method, but the error is limited. The results of numerical model show that PTI method can trace ray-path more accurately and efficiently than LTI method does.展开更多
Aimed at calculating the fundamental frequency of vibration of special-shaped, simple-supported elastic plates, Conformal Mapping theory is applied, and the mathematical method of trigonometric interpolation with inte...Aimed at calculating the fundamental frequency of vibration of special-shaped, simple-supported elastic plates, Conformal Mapping theory is applied, and the mathematical method of trigonometric interpolation with interpolation points mutual iterative between odd and even sequences in boundary region is provided, as well as the conformal mapping function which can be described by real number region between complicated region and unit dish region is carried out. Furthermore, in the in-plane state of constant stress, vibrating function is completed by unit dish region method for simple-supported elastic plates with concentrated substance of complicated vibrating region, and the coefficient of fundamental frequency of the plate is analyzed. Meanwhile, taking simple-supported elastic ellipse-plates as an example, the effects on fundamental frequency caused by eccentric ratio, the coefficient of constant in-plane stress, as well as the concentrated substance mass and positions are analyzed respectively.展开更多
By conformal mapping theory, a trigonometric interpolation method between odd and even sequences in rectangle boundary region was provided, and the conformal mapping function of rectangle-plate with arc radius between...By conformal mapping theory, a trigonometric interpolation method between odd and even sequences in rectangle boundary region was provided, and the conformal mapping function of rectangle-plate with arc radius between complicated region and unite dish region was carried out. Aiming at calculating the vibrating fundamental frequency of special-shaped, elastic simple-supported rectangle-plates, in the in-plane state of constant stress, the vibration function of this complicated plate was depicted by unit dish region. The coefficient of ftmdamental frequency was calculated. Whilst, taking simple-supported elastic rectangle-plates with arc radius as an example, the effects on fundamental frequency caused by the concentrated mass and position, the ratio of the length to width of rectangle, as well as the coefficient of constant in-plane stress were analyzed respectively.展开更多
基金Project(2010CB732103)supported by the National Basic Research Program of ChinaProject(51179092)supported by the National Natural Science Foundation of ChinaProject(2012-KY-02)supported by the State Key Laboratory of Hydroscience and Engineering,China
文摘Recently,the radial point interpolation meshfree method has gained popularity owing to its advantages in large deformation and discontinuity problems,however,the accuracy of this method depends on many factors and their influences are not fully investigated yet.In this work,three main factors,i.e.,the shape parameters,the influence domain size,and the nodal distribution,on the accuracy of the radial point interpolation method(RPIM)are systematically studied and conclusive results are obtained.First,the effect of shape parameters(R,q)of the multi-quadric basis function on the accuracy of RPIM is examined via global search.A new interpolation error index,closely related to the accuracy of RPIM,is proposed.The distribution of various error indexes on the R q plane shows that shape parameters q[1.2,1.8]and R[0,1.5]can give good results for general 3-D analysis.This recommended range of shape parameters is examined by multiple benchmark examples in 3D solid mechanics.Second,through numerical experiments,an average of 30 40 nodes in the influence domain of a Gauss point is recommended for 3-D solid mechanics.Third,it is observed that the distribution of nodes has significant effect on the accuracy of RPIM although it has little effect on the accuracy of interpolation.Nodal distributions with better uniformity give better results.Furthermore,how the influence domain size and nodal distribution affect the selection of shape parameters and how the nodal distribution affects the choice of influence domain size are also discussed.
文摘A new seismic ray-tracing method is put forward based on parabolic travel-time interpolation(PTI) method, which is more accurate than the linear travel-time interpolation (LTI) method. Both PTI method and LTI method are used to compute seismic travel-time and ray-path in a 2-D grid cell model. Firstly, some basic concepts are introduced. The calculations of travel-time and ray-path are carried out only at cell boundaries. So, the ray-path is always straight in the same cells with uniform velocity. Two steps are applied in PTI and LTI method, step 1 computes travel-time and step 2 traces ray-path. Then, the derivation of LTI formulas is described. Because of the presence of refraction wave in shot cell, the formula aiming at shot cell is also derived. Finally, PTI method is presented. The calculation of PTI method is more complex than that of LTI method, but the error is limited. The results of numerical model show that PTI method can trace ray-path more accurately and efficiently than LTI method does.
文摘Aimed at calculating the fundamental frequency of vibration of special-shaped, simple-supported elastic plates, Conformal Mapping theory is applied, and the mathematical method of trigonometric interpolation with interpolation points mutual iterative between odd and even sequences in boundary region is provided, as well as the conformal mapping function which can be described by real number region between complicated region and unit dish region is carried out. Furthermore, in the in-plane state of constant stress, vibrating function is completed by unit dish region method for simple-supported elastic plates with concentrated substance of complicated vibrating region, and the coefficient of fundamental frequency of the plate is analyzed. Meanwhile, taking simple-supported elastic ellipse-plates as an example, the effects on fundamental frequency caused by eccentric ratio, the coefficient of constant in-plane stress, as well as the concentrated substance mass and positions are analyzed respectively.
文摘By conformal mapping theory, a trigonometric interpolation method between odd and even sequences in rectangle boundary region was provided, and the conformal mapping function of rectangle-plate with arc radius between complicated region and unite dish region was carried out. Aiming at calculating the vibrating fundamental frequency of special-shaped, elastic simple-supported rectangle-plates, in the in-plane state of constant stress, the vibration function of this complicated plate was depicted by unit dish region. The coefficient of ftmdamental frequency was calculated. Whilst, taking simple-supported elastic rectangle-plates with arc radius as an example, the effects on fundamental frequency caused by the concentrated mass and position, the ratio of the length to width of rectangle, as well as the coefficient of constant in-plane stress were analyzed respectively.