期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A numerical study of fracture initiation under different loads during hydraulic fracturing 被引量:8
1
作者 TANG Shi-bin DONG Zhuo +1 位作者 WANG Jia-xu MAHMOOD Ahmad 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第12期3875-3887,共13页
The fracture initiation behavior for hydraulic fracturing treatments highlighted the necessity of proposing fracture criteria that precisely predict the fracture initiation type and location during the hydraulic fract... The fracture initiation behavior for hydraulic fracturing treatments highlighted the necessity of proposing fracture criteria that precisely predict the fracture initiation type and location during the hydraulic fracturing process.In the present study,a Mohr-Coulomb criterion with a tensile cut-off is incorporated into the finite element code to determine the fracture initiation type and location during the hydraulic fracturing process.This fracture criterion considers the effect of fracture inclination angle,the internal friction angle and the loading conditions on the distribution of stress field around the fracture tip.The results indicate that the internal friction angle resists the shear fracture initiation.Moreover,as the internal friction angle increases,greater external loads are required to maintain the hydraulic fracture extension.Due to the increased pressure of the injected water,the tensile fracture ultimately determines the fracture initiation type.However,the shear fracture preferentially occurs as the stress anisotropy coefficient increases.Both the maximum tensile stress and equivalent maximum shear stress decrease as the stress anisotropy coefficient increases,which indicates that the greater the stress anisotropy coefficient,the higher the external loading required to propagate a new fracture.The numerical results obtained in this paper provide theoretical supports for establishing basis on investigating of the hydraulic fracturing characteristics under different conditions. 展开更多
关键词 hydraulic fracturing internal friction angle stress anisotropy coefficient finite element method
在线阅读 下载PDF
Earth pressure coefficient at rest during secondary compression 被引量:2
2
作者 赵晓东 周国庆 +1 位作者 商翔宇 陈国舟 《Journal of Central South University》 SCIE EI CAS 2011年第6期2115-2121,共7页
In order to obtain the earth pressure coefficient at rest (K0) at higher consolidation pressures during secondary compression, a series of K0 tests for saturated reconstituted clay were conducted. The results indicate... In order to obtain the earth pressure coefficient at rest (K0) at higher consolidation pressures during secondary compression, a series of K0 tests for saturated reconstituted clay were conducted. The results indicate that the measured K0 in secondary compression can be described by equations related to internal friction angle, secondary compression coefficient, compression index, recompression index, and sediment time. Effects of consolidation pressures and sediment time on K0 during secondary compression can be attributed to cementation (part of cohesion) increase and internal friction angle decrease. Cementation increase leads to nonlinear variation for K0 and internal friction angle decrease results in increase of K0. K0 computed by equations associated with internal friction angle is overestimated at apparent lower consolidation pressures with different sediment time, which agrees with the measured values well at apparent higher consolidation pressures. 展开更多
关键词 earth pressure coefficient at rest secondary compression internal friction angle CEMENTATION
在线阅读 下载PDF
Effect of change of sand properties on travel distance of ricocheted debris
3
作者 Yoon Keon Kim Woo Chun Choi 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第4期1486-1495,共10页
The debris from exploded buildings can ricochet after colliding with the ground,thus increasing the debris travel distance and danger from any associated impacts or collisions.To reduce this danger,the travel distance... The debris from exploded buildings can ricochet after colliding with the ground,thus increasing the debris travel distance and danger from any associated impacts or collisions.To reduce this danger,the travel distance of ricocheted debris must be accurately predicted.This study analyzed the change in the travel distance of ricocheted concrete debris relative to changes in the properties of a sand medium.Direct shear tests were conducted to measure the change in internal friction angle as a function of temperature and water content of the sand.Finite element analysis(FEA)was then applied to these variables to predict the speed and angle of the debris after ricochet.The FEA results were compared with results of low-speed ricochet experiments,which employed variable temperature and water content.The travel distance of the debris was calculated using MATLAB,via trajectory equations considering the drag coefficient.As the internal friction angle decreased,the shear stress decreased,leading to deeper penetration of the debris into the sand.As the loss of kinetic energy increased,the velocity and travel distance of the ricocheted debris decreased.Changes in the ricochet velocity and travel distance of the debris,according to changes in the internal friction angle,indicated that the debris was affected by the environment. 展开更多
关键词 RICOCHET Exploded debirs Environmental change SAND Temperature Water content internal friction angle Travel distance
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部