A core shell structured C@MoxTi1-xO2-δnanocrystal with a functionalized interface(C@MTNC-FI)was fabricated via the hydrothermal method with subsequent annealing derived from tetrabutyl orthotitanate.The formation of ...A core shell structured C@MoxTi1-xO2-δnanocrystal with a functionalized interface(C@MTNC-FI)was fabricated via the hydrothermal method with subsequent annealing derived from tetrabutyl orthotitanate.The formation of anatase TiO2 was inhibited by the simultaneous presence of the hydrothermal etching/regrowth process,infiltration of Mo dopants and carbon coating,which endows the C@MTNC-FI with an ultrafine crystalline architecture that has a Mo-functionalized interface and carbon-coated shell.Pt Ru nanoparticles(NPs)were supported on C@MTNC-FI by employing a microwave-assisted polyol process(MAPP).The obtained Pt Ru/C@MTNC-FI catalyst has 2.68 times higher mass activity towards methanol electrooxidation than that of the un-functionalized catalyst(Pt Ru/C@TNC)and 1.65 times higher mass activity than that of Pt Ru/C catalyst with over 25%increase in durability.The improved catalytic performance is due to several aspects including ultrafine crystals of TiO2 with abundant grain boundaries,Mofunctionalized interface with enhanced electron interactions,and core shell architecture with excellent electrical transport properties.This work suggests the potential application of an interface-functionalized crystalline material as a sustainable and clean energy solution.展开更多
Gap acceptance theory is broadly used for evaluating unsignalized intersections in developed coun tries. Intersections with no specific priority to any move ment, known as uncontrolled intersections, are common in Ind...Gap acceptance theory is broadly used for evaluating unsignalized intersections in developed coun tries. Intersections with no specific priority to any move ment, known as uncontrolled intersections, are common in India. Limited priority is observed at a few intersections, where priorities are perceived by drivers based on geom etry, traffic volume, and speed on the approaches of intersection. Analyzing such intersections is complex because the overall traffic behavior is the result of drivers, vehicles, and traffic flow characteristics. Fuzzy theory has been widely used to analyze similar situations. This paper describes the application of adaptive neurofuzzy interface system (ANFIS) to the modeling of gap acceptance behavior of rightturning vehicles at limited priority Tintersections (in India, vehicles are driven on the left side of a road). Field data are collected using video cameras at four Tintersections having limited priority. The data extracted include gap/lag, subject vehicle type, conflicting vehicle type, and driver's decision (accepted/rejected). ANFIS models are developed by using 80 % of the extracted data (total data observations for major road right turning vehicles are 722 and 1,066 for minor road right turning vehicles) and remaining are used for model vali dation. Four different combinations of input variables are considered for major and minor road right turnings sepa rately. Correct prediction by ANFIS models ranges from 75.17 % to 82.16 % for major road right turning and 87.20 % to 88.62 % for minor road right turning. Themodels developed in this paper can be used in the dynamic estimation of gap acceptance in traffic simulation models.展开更多
Employing density functional theory, we study the tensile and fracture processes of the phase interfaces in Mg–Li binary alloy. The simulation presents the strain–stress relationships, the ideal tensile strengths, a...Employing density functional theory, we study the tensile and fracture processes of the phase interfaces in Mg–Li binary alloy. The simulation presents the strain–stress relationships, the ideal tensile strengths, and the fracture processes of three phase interfaces. The results show that the α/α and α/β interfaces have larger tensile strength than that of β/β interface. The fractures of both α/α and β/β interfaces are ductile fractures, while the α/β fractures abruptly._Further analyses show that the fracture of the α/β occurs at the interface.展开更多
基金the National Natural Science Foundation of China (Grant Nos. 21273058, 21673064, 51802059 and 21503059)China Postdoctoral Science Foundation (Grant Nos. 2018M631938, 2018T110307 and 2017M621284)+1 种基金Heilongjiang Postdoctoral Fund (LBH-Z17074)Fundamental Research Funds for the Central Universities (Grant No. HIT. NSRIF. 2019040 and 2019041)
文摘A core shell structured C@MoxTi1-xO2-δnanocrystal with a functionalized interface(C@MTNC-FI)was fabricated via the hydrothermal method with subsequent annealing derived from tetrabutyl orthotitanate.The formation of anatase TiO2 was inhibited by the simultaneous presence of the hydrothermal etching/regrowth process,infiltration of Mo dopants and carbon coating,which endows the C@MTNC-FI with an ultrafine crystalline architecture that has a Mo-functionalized interface and carbon-coated shell.Pt Ru nanoparticles(NPs)were supported on C@MTNC-FI by employing a microwave-assisted polyol process(MAPP).The obtained Pt Ru/C@MTNC-FI catalyst has 2.68 times higher mass activity towards methanol electrooxidation than that of the un-functionalized catalyst(Pt Ru/C@TNC)and 1.65 times higher mass activity than that of Pt Ru/C catalyst with over 25%increase in durability.The improved catalytic performance is due to several aspects including ultrafine crystals of TiO2 with abundant grain boundaries,Mofunctionalized interface with enhanced electron interactions,and core shell architecture with excellent electrical transport properties.This work suggests the potential application of an interface-functionalized crystalline material as a sustainable and clean energy solution.
基金partially funded by Department of Science and Technology (DST), Govt. of Indiaproject SR/ FTP/ETA-61/2010
文摘Gap acceptance theory is broadly used for evaluating unsignalized intersections in developed coun tries. Intersections with no specific priority to any move ment, known as uncontrolled intersections, are common in India. Limited priority is observed at a few intersections, where priorities are perceived by drivers based on geom etry, traffic volume, and speed on the approaches of intersection. Analyzing such intersections is complex because the overall traffic behavior is the result of drivers, vehicles, and traffic flow characteristics. Fuzzy theory has been widely used to analyze similar situations. This paper describes the application of adaptive neurofuzzy interface system (ANFIS) to the modeling of gap acceptance behavior of rightturning vehicles at limited priority Tintersections (in India, vehicles are driven on the left side of a road). Field data are collected using video cameras at four Tintersections having limited priority. The data extracted include gap/lag, subject vehicle type, conflicting vehicle type, and driver's decision (accepted/rejected). ANFIS models are developed by using 80 % of the extracted data (total data observations for major road right turning vehicles are 722 and 1,066 for minor road right turning vehicles) and remaining are used for model vali dation. Four different combinations of input variables are considered for major and minor road right turnings sepa rately. Correct prediction by ANFIS models ranges from 75.17 % to 82.16 % for major road right turning and 87.20 % to 88.62 % for minor road right turning. Themodels developed in this paper can be used in the dynamic estimation of gap acceptance in traffic simulation models.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.50874079,51002102,and 61205179)the Natural Science Foundation of Shanxi Province,China(Grant No.2009021026)
文摘Employing density functional theory, we study the tensile and fracture processes of the phase interfaces in Mg–Li binary alloy. The simulation presents the strain–stress relationships, the ideal tensile strengths, and the fracture processes of three phase interfaces. The results show that the α/α and α/β interfaces have larger tensile strength than that of β/β interface. The fractures of both α/α and β/β interfaces are ductile fractures, while the α/β fractures abruptly._Further analyses show that the fracture of the α/β occurs at the interface.