The state estimation of a maneuvering target,of which the trajectory shape is independent on dynamic characteristics,is studied.The conventional motion models in Cartesian coordinates imply that the trajectory of a ta...The state estimation of a maneuvering target,of which the trajectory shape is independent on dynamic characteristics,is studied.The conventional motion models in Cartesian coordinates imply that the trajectory of a target is completely determined by its dynamic characteristics.However,this is not true in the applications of road-target,sea-route-target or flight route-target tracking,where target trajectory shape is uncoupled with target velocity properties.In this paper,a new estimation algorithm based on separate modeling of target trajectory shape and dynamic characteristics is proposed.The trajectory of a target over a sliding window is described by a linear function of the arc length.To determine the unknown target trajectory,an augmented system is derived by denoting the unknown coefficients of the function as states in mileage coordinates.At every estimation cycle except the first one,the interaction(mixing)stage of the proposed algorithm starts from the latest estimated base state and a recalculated parameter vector,which is determined by the least squares(LS).Numerical experiments are conducted to assess the performance of the proposed algorithm.Simulation results show that the proposed algorithm can achieve better performance than the conventional coupled model-based algorithms in the presence of target maneuvers.展开更多
针对常规线性卡尔曼滤波越来越不能满足多机动目标跟踪精度需求的问题,提出一种基于自适应多模型粒子滤波的协同跟踪方法.首先,主车和协同车分别执行自适应交互式多模型粒子滤波(adaptive interactive multi model particle filter,AIMM...针对常规线性卡尔曼滤波越来越不能满足多机动目标跟踪精度需求的问题,提出一种基于自适应多模型粒子滤波的协同跟踪方法.首先,主车和协同车分别执行自适应交互式多模型粒子滤波(adaptive interactive multi model particle filter,AIMM-PF)算法,获得环境中目标车辆的运动状态;其次,协同车通过车车通信将跟踪到的目标状态发送给主车;最后,利用基于匈牙利算法和快速协方差交叉算法的数据关联和数据融合技术实现多机动目标的协同跟踪.搭建了V2V通信、雷达和定位仿真系统,选定两辆智能车作为主车和协同车,感知并跟踪200 m范围内的7辆目标车,进行了仿真试验.结果表明,与传统的单车跟踪相比,协同跟踪扩大了感知范围,且在不影响跟踪效率的情况下使跟踪误差降低了31.1%.展开更多
针对多普勒盲区条件下预警机雷达多目标跟踪问题,基于交互式多模型(IMM,Interacting Multiple Models)、联合概率数据互联(JPDA,Joint Probability Data Association)和分布式不敏卡尔曼滤波(UKF,Unscented Kalman Filter)提出了预警机...针对多普勒盲区条件下预警机雷达多目标跟踪问题,基于交互式多模型(IMM,Interacting Multiple Models)、联合概率数据互联(JPDA,Joint Probability Data Association)和分布式不敏卡尔曼滤波(UKF,Unscented Kalman Filter)提出了预警机雷达与地基雷达对目标进行协同跟踪的方法。该方法利用目标的状态估计和预测实时计算每部雷达的动态融合权值,预测目标的多普勒频率。当预警机雷达对目标的量测不存在且检测到目标进入预警机雷达多普勒盲区时,由预警机雷达对目标状态进行外推,以此产生虚拟量测,用虚拟量测与地基雷达协同跟踪对目标的融合估计状态进行更新;若预警机雷达对目标的量测不存在且目标不是进入多普勒盲区时,由地基雷达单独对目标的融合估计状态进行更新。当目标飞出预警机雷达多普勒盲区后,将预警机雷达对目标的状态估计再次与地基雷达进行关联,并根据动态权值融合更新目标状态。仿真结果表明,该方法能够改善多普勒盲区内多目标航迹的连续性和跟踪精度。展开更多
基金supported by the National Natural Science Foundation of China(61671181).
文摘The state estimation of a maneuvering target,of which the trajectory shape is independent on dynamic characteristics,is studied.The conventional motion models in Cartesian coordinates imply that the trajectory of a target is completely determined by its dynamic characteristics.However,this is not true in the applications of road-target,sea-route-target or flight route-target tracking,where target trajectory shape is uncoupled with target velocity properties.In this paper,a new estimation algorithm based on separate modeling of target trajectory shape and dynamic characteristics is proposed.The trajectory of a target over a sliding window is described by a linear function of the arc length.To determine the unknown target trajectory,an augmented system is derived by denoting the unknown coefficients of the function as states in mileage coordinates.At every estimation cycle except the first one,the interaction(mixing)stage of the proposed algorithm starts from the latest estimated base state and a recalculated parameter vector,which is determined by the least squares(LS).Numerical experiments are conducted to assess the performance of the proposed algorithm.Simulation results show that the proposed algorithm can achieve better performance than the conventional coupled model-based algorithms in the presence of target maneuvers.
文摘针对常规线性卡尔曼滤波越来越不能满足多机动目标跟踪精度需求的问题,提出一种基于自适应多模型粒子滤波的协同跟踪方法.首先,主车和协同车分别执行自适应交互式多模型粒子滤波(adaptive interactive multi model particle filter,AIMM-PF)算法,获得环境中目标车辆的运动状态;其次,协同车通过车车通信将跟踪到的目标状态发送给主车;最后,利用基于匈牙利算法和快速协方差交叉算法的数据关联和数据融合技术实现多机动目标的协同跟踪.搭建了V2V通信、雷达和定位仿真系统,选定两辆智能车作为主车和协同车,感知并跟踪200 m范围内的7辆目标车,进行了仿真试验.结果表明,与传统的单车跟踪相比,协同跟踪扩大了感知范围,且在不影响跟踪效率的情况下使跟踪误差降低了31.1%.
文摘针对多普勒盲区条件下预警机雷达多目标跟踪问题,基于交互式多模型(IMM,Interacting Multiple Models)、联合概率数据互联(JPDA,Joint Probability Data Association)和分布式不敏卡尔曼滤波(UKF,Unscented Kalman Filter)提出了预警机雷达与地基雷达对目标进行协同跟踪的方法。该方法利用目标的状态估计和预测实时计算每部雷达的动态融合权值,预测目标的多普勒频率。当预警机雷达对目标的量测不存在且检测到目标进入预警机雷达多普勒盲区时,由预警机雷达对目标状态进行外推,以此产生虚拟量测,用虚拟量测与地基雷达协同跟踪对目标的融合估计状态进行更新;若预警机雷达对目标的量测不存在且目标不是进入多普勒盲区时,由地基雷达单独对目标的融合估计状态进行更新。当目标飞出预警机雷达多普勒盲区后,将预警机雷达对目标的状态估计再次与地基雷达进行关联,并根据动态权值融合更新目标状态。仿真结果表明,该方法能够改善多普勒盲区内多目标航迹的连续性和跟踪精度。