The negative ion based neutral beam injector(NNBI)with a beam energy of 400 keV is one of the subsystems at the Comprehensive Research fAcility for Fusion Technology(CRAFT)in China.The distributed capacitance of the h...The negative ion based neutral beam injector(NNBI)with a beam energy of 400 keV is one of the subsystems at the Comprehensive Research fAcility for Fusion Technology(CRAFT)in China.The distributed capacitance of the high-voltage components is an important basis for the design of surge suppression devices at CRAFT NNBI.This study conducted calculations of distributed capacitance for the key components,including the high-voltage deck,transmission line and isolation transformer in the power supply system using the finite element method.The relationship between the high-voltage deck(HVD)distributed capacitance and the distance from the wall is discussed.The differences in distributed capacitance and energy storage between noncoaxial and coaxial transmission lines are also debated.Finally,the capacitance between the primary and secondary windings of the-400 kV isolation transformer,as well as between the secondary winding and the oil tank casing,was calculated.展开更多
For establishing the equation of the capacitive target detection accurately, the distributing characteristics of the charges on the bomb body with capacitance fuze were explored. Continuous charges were analyzed disp...For establishing the equation of the capacitive target detection accurately, the distributing characteristics of the charges on the bomb body with capacitance fuze were explored. Continuous charges were analyzed dispersively. Based on the Coulomb's law, the dynamic equilibrium equations of the inducing charges on the bomb body were set up. For the four cases of d 0/L (the ratio between the electrode distance and the bomb length), the curves of the charge's distribution were given. It was concluded that: ① the charge density decreases steadily from the end near the frontal electrode to the bomb tail; ② the declining rate of the density is governed by d 0/L , the larger the value of d 0/L ,the higher the declining rate, and vice versa.展开更多
In general,as the radio frequency(RF)power increases in a capacitively coupled plasma(CCP),the power transfer efficiency decreases because the resistance of the CCP decreases.In this work,a parallel resonance circuit ...In general,as the radio frequency(RF)power increases in a capacitively coupled plasma(CCP),the power transfer efficiency decreases because the resistance of the CCP decreases.In this work,a parallel resonance circuit is applied to improve the power transfer efficiency at high RF power,and the effect of the parallel resonance on the electron energy distribution function(EEDF)is investigated in a 60 MHz CCP.The CCP consists of a power feed line,the electrodes,and plasma.The reactance of the CCP is positive at 60 MHz and acts like an inductive load.A vacuum variable capacitor(VVC)is connected in parallel with the inductive load,and then the parallel resonance between the VVC and the inductive load can be achieved.As the capacitance of the VVC approaches the parallel resonance condition,the equivalent resistance of the parallel circuit is considerably larger than that without the VVC,and the current flowing through the matching network is greatly reduced.Therefore,the power transfer efficiency of the discharge is improved from 76%,70%,and 68%to 81%,77%,and 76%at RF powers of 100 W,150 W,and 200 W,respectively.At parallel resonance conditions,the electron heating in bulk plasma is enhanced,which cannot be achieved without the VVC even at the higher RF powers.This enhancement of electron heating results in the evolution of the shape of the EEDF from a biMaxwellian distribution to a distribution with the smaller temperature difference between high-energy electrons and low-energy electrons.Due to the parallel resonance effect,the electron density increases by approximately 4%,18%,and 21%at RF powers of 100 W,150 W,and 200 W,respectively.展开更多
基金supported by the Comprehensive Research Facility for Fusion Technology Program of China(No.2018000052-73-01-001228)National Natural Science Foundation of China(No.11975263)Postgraduate Research and Practice Innovation Program of NUAA(No.xcxjh20231501)。
文摘The negative ion based neutral beam injector(NNBI)with a beam energy of 400 keV is one of the subsystems at the Comprehensive Research fAcility for Fusion Technology(CRAFT)in China.The distributed capacitance of the high-voltage components is an important basis for the design of surge suppression devices at CRAFT NNBI.This study conducted calculations of distributed capacitance for the key components,including the high-voltage deck,transmission line and isolation transformer in the power supply system using the finite element method.The relationship between the high-voltage deck(HVD)distributed capacitance and the distance from the wall is discussed.The differences in distributed capacitance and energy storage between noncoaxial and coaxial transmission lines are also debated.Finally,the capacitance between the primary and secondary windings of the-400 kV isolation transformer,as well as between the secondary winding and the oil tank casing,was calculated.
文摘For establishing the equation of the capacitive target detection accurately, the distributing characteristics of the charges on the bomb body with capacitance fuze were explored. Continuous charges were analyzed dispersively. Based on the Coulomb's law, the dynamic equilibrium equations of the inducing charges on the bomb body were set up. For the four cases of d 0/L (the ratio between the electrode distance and the bomb length), the curves of the charge's distribution were given. It was concluded that: ① the charge density decreases steadily from the end near the frontal electrode to the bomb tail; ② the declining rate of the density is governed by d 0/L , the larger the value of d 0/L ,the higher the declining rate, and vice versa.
基金supported by the National Research Foundation of Korea(Nos.NRF-2019M1A7A1A03087579 and NRF-2021R1I1A1A01050312)the Ministry of Trade,Industry&Energy(Nos.20011226 and 20009415)。
文摘In general,as the radio frequency(RF)power increases in a capacitively coupled plasma(CCP),the power transfer efficiency decreases because the resistance of the CCP decreases.In this work,a parallel resonance circuit is applied to improve the power transfer efficiency at high RF power,and the effect of the parallel resonance on the electron energy distribution function(EEDF)is investigated in a 60 MHz CCP.The CCP consists of a power feed line,the electrodes,and plasma.The reactance of the CCP is positive at 60 MHz and acts like an inductive load.A vacuum variable capacitor(VVC)is connected in parallel with the inductive load,and then the parallel resonance between the VVC and the inductive load can be achieved.As the capacitance of the VVC approaches the parallel resonance condition,the equivalent resistance of the parallel circuit is considerably larger than that without the VVC,and the current flowing through the matching network is greatly reduced.Therefore,the power transfer efficiency of the discharge is improved from 76%,70%,and 68%to 81%,77%,and 76%at RF powers of 100 W,150 W,and 200 W,respectively.At parallel resonance conditions,the electron heating in bulk plasma is enhanced,which cannot be achieved without the VVC even at the higher RF powers.This enhancement of electron heating results in the evolution of the shape of the EEDF from a biMaxwellian distribution to a distribution with the smaller temperature difference between high-energy electrons and low-energy electrons.Due to the parallel resonance effect,the electron density increases by approximately 4%,18%,and 21%at RF powers of 100 W,150 W,and 200 W,respectively.