In order to establish the quantitative relationship between equivalent strain and the performance index of the deformed material within the range of certain passes for equal channel angular processing (ECAP), a new ...In order to establish the quantitative relationship between equivalent strain and the performance index of the deformed material within the range of certain passes for equal channel angular processing (ECAP), a new approach to characterize the equivalent strain was proposed. The results show that there exists better accordance between mechanical property (such as hardness or strength) and equivalent strain after rolling and ECAP in a certain range of deformation amount, and Gauss equation can be satisfied among the equivalent strain and the mechanical properties for ECAP. Through regression analysis on the data of hardness and strength after the deformation, a more generalized expression of equivalent strain for ECAP is proposed as:ε=k0exp[-(k1M-k2)^2], where M is the strength or hardness of the material, k1 is the modified coefficient (k1∈ (0, 1)), ko and k2 are two parameters dependent on the critical strain and mechanical property that reaches saturation state for the material, respectively. In this expression the equivalent strain for ECAP is characterized novelly through the mechanical parameter relating to material property rather than the classical geometry equation.展开更多
This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standar...This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standard system was established for comprehensive quality evaluation of HTD.There were obvious changes in the physicochemical properties,enzyme activities,and volatile flavor components at different storage periods,which affected the sensory evaluation of HTD to a certain extent.The results of high-throughput sequencing revealed significant microbial diversity,and showed that the bacterial community changed significantly more than did the fungal community.During the storage process,the dominant bacterial genera were Kroppenstedtia and Thermoascus.The correlation between dominant microorganisms and quality indicators highlighted their role in HTD quality.Lactococcus,Candida,Pichia,Paecilomyces,and protease activity played a crucial role in the formation of isovaleraldehyde.Acidic protease activity had the greatest impact on the microbial community.Moisture promoted isobutyric acid generation.Furthermore,the comprehensive quality evaluation standard system was established by the entropy weight method combined with multi-factor fuzzy mathematics.Consequently,this study provides innovative insights for comprehensive quality evaluation of HTD during storage and establishes a groundwork for scientific and rational storage of HTD and quality control of sauce-flavor Baijiu.展开更多
Due to the current trend towards lightweight design in automotive industry,hollow stepped gear shafts for automobile and its radial forging process are widely investigated.Utilizing coupled finite element thermo-mecha...Due to the current trend towards lightweight design in automotive industry,hollow stepped gear shafts for automobile and its radial forging process are widely investigated.Utilizing coupled finite element thermo-mechanical model,radial forging process of a hollow stepped gear shaft for automobile was simulated.The optimal combination of three process parameters including initial temperature,rotation rate and radial reduction was also selected using orthogonal design method.To examine the strain inhomogeneity of the forging workpiece,the strain inhomogeneity factor was introduced.The results reveal that the maximum effective strain and the minimum effective strain appeared in the outermost and innermost zones of different cross sections for the hollow stepped gear shaft,respectively.Optimal forging parameters are determined as a combination of initial temperature of 780°C,rotation rate of 21°/stroke and radial reduction of 3 mm.展开更多
The macro mechanical properties of materials with characteristics of large scale and complicated structural composition can be analyzed through its reconstructed meso-structures.In this work,the meso-structures of tal...The macro mechanical properties of materials with characteristics of large scale and complicated structural composition can be analyzed through its reconstructed meso-structures.In this work,the meso-structures of talus deposits that widely exist in the hydro-power engineering in the southwest of China were first reconstructed by small particles according to the in-situ photographs based on the self-adaptive PCNN digital image processing,and then numerical direct shear tests were carried out for studying the mechanical properties of talus deposits.Results indicate that the reconstructed meso-structures of talus deposits are more consistent with the actual situation because the self-adaptive PCNN digital image processing has a higher discrimination in the details of soil-rock segmentation.The existence and random distribution of rock blocks make the initial shear stiffness,the peak strength and the residual strength higher than those of the "pure soil" with particle size less than 1.25 cm apparently,but reduce the displacements required for the talus deposits reaching its peak shear strength.The increase of rock proportion causes a significant improvement in the internal friction angle of talus deposit,which to a certain degree leads to the characteristics of shear stress-displacement curves having a changing trend from the plastic strain softening deformation to the nonlinear strain hardening deformation,while an unconspicuous increase in cohesion.The uncertainty and heterogeneity of rock distributions cause the differences of rock proportion within shear zone,leading to a relatively strong fluctuation in peak strengths during the shear process,while movement features of rock blocks,such as translation,rotation and crossing,expand the scope of shear zone,increase the required shear force,and also directly lead to the misjudgment that the lower shear strength is obtained from the samples with high rock proportion.That,however,just explains the reason why the shear strength gained from a small amount of indoor test data is not consistent with engineering practice.展开更多
This paper investigates process parameter effects on microstructure and mechanical properties of the tubes processed via recently developed friction assisted tube straining(FATS)method.For this purpose,design of exper...This paper investigates process parameter effects on microstructure and mechanical properties of the tubes processed via recently developed friction assisted tube straining(FATS)method.For this purpose,design of experiment was used to arrange finite element analyses and experimental tests.Numerical and experimental tests were executed by changing rotary speed,feed rate and die angle.Taguchi design results show that increasing feed rate and decreasing rotary speed enhance Zener-Hollomon(Z)parameter and decrease average grain size,while die angle has no considerable effect.Increasing Z value reduces grain size and enhances flow stress of the processed samples,while the experiment with the highest Z value refines initial microstructure from 40 to 8μm and increases flow stress by 5 times.展开更多
Random error of grinding process is central factor th at give an effect on grinding quality all through. Optimum methods are usually a pplied on grinding process for higher productivity and preferable grinding quali t...Random error of grinding process is central factor th at give an effect on grinding quality all through. Optimum methods are usually a pplied on grinding process for higher productivity and preferable grinding quali ty. But the grinding quality can’t be reliably controlled now and then while opt imal solution of grinding processing parameters have been applied in production, because of two involved aspects which are availability of established empirical formulas and reliability of setting up optimum mathematical model. That is to s ay, there is particular application of optimum methods in grinding process. This paper discussed that how to confirm conditions of grinding test which be po int to grinding peculiarity when test design and regression analysis are used to setting up some empirical formulas. In order to reduce effect of random errors on precision of the empirical formulas and enable them to be applied widely, a m ethod that a lot of random error can be sufficiently contained in grinding test was suggested. And then, A means to ameliorate restriction formulas of grinding quality is expounded based on marked level of the empirical formulas and improve d reliability of optimum mathematical model is given, which offer an effectual w ay for solving grinding quality out of control as a result of random error and w orkable optimal solution of grinding processing parameters can be applied in the production really. Finally, an example is presented.展开更多
多端直流电网架空线路故障概率高、设备耐受过电流能力有限,无选择性的重合将严重危害一次设备的安全性和电网的稳定性,因此提出了一种基于动态时间规整(dynamic time warping, DTW)的重构序列重合方法,实现重合前故障性质的预判。首先...多端直流电网架空线路故障概率高、设备耐受过电流能力有限,无选择性的重合将严重危害一次设备的安全性和电网的稳定性,因此提出了一种基于动态时间规整(dynamic time warping, DTW)的重构序列重合方法,实现重合前故障性质的预判。首先介绍了直流线路的贝杰龙时域等值建模方法,在此基础上,建立了各关键一次设备的贝杰龙等值模型,分析了瞬时性、永久性故障工况下模型等效时域波过程的差异性。然后以瞬时性故障为基准,对直流断路器注入信号所引发的电气分量暂态成分进行理论计算,并借助DTW重构序列量化整定门槛、进一步消除色散误差,最终以此为指标构造判据实现故障性质的识别。基于PSCAD/EMTDC平台的四端直流电网仿真算例显示,所提出的自适应重合方法仅需要单端量,不依赖通信,能够消除死区,且拥有600Ω的灵敏性。展开更多
氢电混动汽车(fuel-cell hybrid electric vehicles,FCHEV)的出现有效促进了能源-交通系统的绿色低碳转型。现阶段关于FCHEV的研究主要集中在能量管理和控制策略上,较少关注灵活性潜力评估方面,为此,提出了一种计及车主充能意愿差异性的...氢电混动汽车(fuel-cell hybrid electric vehicles,FCHEV)的出现有效促进了能源-交通系统的绿色低碳转型。现阶段关于FCHEV的研究主要集中在能量管理和控制策略上,较少关注灵活性潜力评估方面,为此,提出了一种计及车主充能意愿差异性的FCHEV集群灵活性潜力评估方法。首先,建立城市交通路网模型模拟FCHEV的出行特征,进而建立单体FCHEV充能模型;其次,利用改进层次分析法并结合熵权法建立车主充能意愿综合评价体系,并综合考虑禀赋效应和环保意识对车主响应意愿度的影响;最后,建立FCHEV集群灵活性潜力评估模型,求解得出潜力评估结果。仿真结果表明,所提方法在评估过程中能够合理刻画车主充能意愿的差异性,并有效提高集群参与优化调度时系统的灵活性。展开更多
基金Projects(50471102,50671089) supported by the National Natural Science Foundation of China
文摘In order to establish the quantitative relationship between equivalent strain and the performance index of the deformed material within the range of certain passes for equal channel angular processing (ECAP), a new approach to characterize the equivalent strain was proposed. The results show that there exists better accordance between mechanical property (such as hardness or strength) and equivalent strain after rolling and ECAP in a certain range of deformation amount, and Gauss equation can be satisfied among the equivalent strain and the mechanical properties for ECAP. Through regression analysis on the data of hardness and strength after the deformation, a more generalized expression of equivalent strain for ECAP is proposed as:ε=k0exp[-(k1M-k2)^2], where M is the strength or hardness of the material, k1 is the modified coefficient (k1∈ (0, 1)), ko and k2 are two parameters dependent on the critical strain and mechanical property that reaches saturation state for the material, respectively. In this expression the equivalent strain for ECAP is characterized novelly through the mechanical parameter relating to material property rather than the classical geometry equation.
文摘This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standard system was established for comprehensive quality evaluation of HTD.There were obvious changes in the physicochemical properties,enzyme activities,and volatile flavor components at different storage periods,which affected the sensory evaluation of HTD to a certain extent.The results of high-throughput sequencing revealed significant microbial diversity,and showed that the bacterial community changed significantly more than did the fungal community.During the storage process,the dominant bacterial genera were Kroppenstedtia and Thermoascus.The correlation between dominant microorganisms and quality indicators highlighted their role in HTD quality.Lactococcus,Candida,Pichia,Paecilomyces,and protease activity played a crucial role in the formation of isovaleraldehyde.Acidic protease activity had the greatest impact on the microbial community.Moisture promoted isobutyric acid generation.Furthermore,the comprehensive quality evaluation standard system was established by the entropy weight method combined with multi-factor fuzzy mathematics.Consequently,this study provides innovative insights for comprehensive quality evaluation of HTD during storage and establishes a groundwork for scientific and rational storage of HTD and quality control of sauce-flavor Baijiu.
基金Projects(51774054,51974050)supported by the National Natural Science Foundation of China。
文摘Due to the current trend towards lightweight design in automotive industry,hollow stepped gear shafts for automobile and its radial forging process are widely investigated.Utilizing coupled finite element thermo-mechanical model,radial forging process of a hollow stepped gear shaft for automobile was simulated.The optimal combination of three process parameters including initial temperature,rotation rate and radial reduction was also selected using orthogonal design method.To examine the strain inhomogeneity of the forging workpiece,the strain inhomogeneity factor was introduced.The results reveal that the maximum effective strain and the minimum effective strain appeared in the outermost and innermost zones of different cross sections for the hollow stepped gear shaft,respectively.Optimal forging parameters are determined as a combination of initial temperature of 780°C,rotation rate of 21°/stroke and radial reduction of 3 mm.
基金Project(2013BAB06B00) supported by the National Key Technology R&D Programof ChinaProject(2011CB013504) supported by the National Basic Research Program of ChinaProject(50911130366) supported by the National Natural Science Foundation of China
文摘The macro mechanical properties of materials with characteristics of large scale and complicated structural composition can be analyzed through its reconstructed meso-structures.In this work,the meso-structures of talus deposits that widely exist in the hydro-power engineering in the southwest of China were first reconstructed by small particles according to the in-situ photographs based on the self-adaptive PCNN digital image processing,and then numerical direct shear tests were carried out for studying the mechanical properties of talus deposits.Results indicate that the reconstructed meso-structures of talus deposits are more consistent with the actual situation because the self-adaptive PCNN digital image processing has a higher discrimination in the details of soil-rock segmentation.The existence and random distribution of rock blocks make the initial shear stiffness,the peak strength and the residual strength higher than those of the "pure soil" with particle size less than 1.25 cm apparently,but reduce the displacements required for the talus deposits reaching its peak shear strength.The increase of rock proportion causes a significant improvement in the internal friction angle of talus deposit,which to a certain degree leads to the characteristics of shear stress-displacement curves having a changing trend from the plastic strain softening deformation to the nonlinear strain hardening deformation,while an unconspicuous increase in cohesion.The uncertainty and heterogeneity of rock distributions cause the differences of rock proportion within shear zone,leading to a relatively strong fluctuation in peak strengths during the shear process,while movement features of rock blocks,such as translation,rotation and crossing,expand the scope of shear zone,increase the required shear force,and also directly lead to the misjudgment that the lower shear strength is obtained from the samples with high rock proportion.That,however,just explains the reason why the shear strength gained from a small amount of indoor test data is not consistent with engineering practice.
文摘This paper investigates process parameter effects on microstructure and mechanical properties of the tubes processed via recently developed friction assisted tube straining(FATS)method.For this purpose,design of experiment was used to arrange finite element analyses and experimental tests.Numerical and experimental tests were executed by changing rotary speed,feed rate and die angle.Taguchi design results show that increasing feed rate and decreasing rotary speed enhance Zener-Hollomon(Z)parameter and decrease average grain size,while die angle has no considerable effect.Increasing Z value reduces grain size and enhances flow stress of the processed samples,while the experiment with the highest Z value refines initial microstructure from 40 to 8μm and increases flow stress by 5 times.
文摘Random error of grinding process is central factor th at give an effect on grinding quality all through. Optimum methods are usually a pplied on grinding process for higher productivity and preferable grinding quali ty. But the grinding quality can’t be reliably controlled now and then while opt imal solution of grinding processing parameters have been applied in production, because of two involved aspects which are availability of established empirical formulas and reliability of setting up optimum mathematical model. That is to s ay, there is particular application of optimum methods in grinding process. This paper discussed that how to confirm conditions of grinding test which be po int to grinding peculiarity when test design and regression analysis are used to setting up some empirical formulas. In order to reduce effect of random errors on precision of the empirical formulas and enable them to be applied widely, a m ethod that a lot of random error can be sufficiently contained in grinding test was suggested. And then, A means to ameliorate restriction formulas of grinding quality is expounded based on marked level of the empirical formulas and improve d reliability of optimum mathematical model is given, which offer an effectual w ay for solving grinding quality out of control as a result of random error and w orkable optimal solution of grinding processing parameters can be applied in the production really. Finally, an example is presented.
文摘多端直流电网架空线路故障概率高、设备耐受过电流能力有限,无选择性的重合将严重危害一次设备的安全性和电网的稳定性,因此提出了一种基于动态时间规整(dynamic time warping, DTW)的重构序列重合方法,实现重合前故障性质的预判。首先介绍了直流线路的贝杰龙时域等值建模方法,在此基础上,建立了各关键一次设备的贝杰龙等值模型,分析了瞬时性、永久性故障工况下模型等效时域波过程的差异性。然后以瞬时性故障为基准,对直流断路器注入信号所引发的电气分量暂态成分进行理论计算,并借助DTW重构序列量化整定门槛、进一步消除色散误差,最终以此为指标构造判据实现故障性质的识别。基于PSCAD/EMTDC平台的四端直流电网仿真算例显示,所提出的自适应重合方法仅需要单端量,不依赖通信,能够消除死区,且拥有600Ω的灵敏性。
文摘氢电混动汽车(fuel-cell hybrid electric vehicles,FCHEV)的出现有效促进了能源-交通系统的绿色低碳转型。现阶段关于FCHEV的研究主要集中在能量管理和控制策略上,较少关注灵活性潜力评估方面,为此,提出了一种计及车主充能意愿差异性的FCHEV集群灵活性潜力评估方法。首先,建立城市交通路网模型模拟FCHEV的出行特征,进而建立单体FCHEV充能模型;其次,利用改进层次分析法并结合熵权法建立车主充能意愿综合评价体系,并综合考虑禀赋效应和环保意识对车主响应意愿度的影响;最后,建立FCHEV集群灵活性潜力评估模型,求解得出潜力评估结果。仿真结果表明,所提方法在评估过程中能够合理刻画车主充能意愿的差异性,并有效提高集群参与优化调度时系统的灵活性。