Frequent extreme disasters have led to frequent large-scale power outages in recent years.To quickly restore power,it is necessary to understand the damage information of the distribution network accurately.However,th...Frequent extreme disasters have led to frequent large-scale power outages in recent years.To quickly restore power,it is necessary to understand the damage information of the distribution network accurately.However,the public network communication system is easily damaged after disasters,causing the operation center to lose control of the distribution network.In this paper,we considered using satellites to transmit the distribution network data and focus on the resource scheduling problem of the satellite emergency communication system for the distribution network.Specifically,this paper first formulates the satellite beam-pointing problem and the accesschannel joint resource allocation problem.Then,this paper proposes the Priority-based Beam-pointing and Access-Channel joint optimization algorithm(PBAC),which uses convex optimization theory to solve the satellite beam pointing problem,and adopts the block coordinate descent method,Lagrangian dual method,and a greedy algorithm to solve the access-channel joint resource allocation problem,thereby obtaining the optimal resource scheduling scheme for the satellite network.Finally,this paper conducts comparative experiments with existing methods to verify the effec-tiveness of the proposed methods.The results show that the total weighted transmitted data of the proposed algorithm is increased by about 19.29∼26.29%compared with other algorithms.展开更多
Generative artificial intelligence(AI),as an emerging paradigm in content generation,has demonstrated its great potentials in creating high-fidelity data including images,texts,and videos.Nowadays wireless networks an...Generative artificial intelligence(AI),as an emerging paradigm in content generation,has demonstrated its great potentials in creating high-fidelity data including images,texts,and videos.Nowadays wireless networks and applications have been rapidly evolving from achieving“connected things”to embracing“connected intelligence”.展开更多
Orbital angular momentum(OAM)can achieve multifold increase of spectrum efficiency,but the hollow divergence characteristic and Line-of-Sight(LoS)path requirement impose the crucial challenges for vortex wave communic...Orbital angular momentum(OAM)can achieve multifold increase of spectrum efficiency,but the hollow divergence characteristic and Line-of-Sight(LoS)path requirement impose the crucial challenges for vortex wave communications.For air-to-ground vortex wave communications,where there exists the LoS path,this paper proposes a multi-user cooperative receive(MUCR)scheme to break through the communication distance limitation caused by the characteristic of vortex wave hollow divergence.In particular,we derive the optimal radial position corresponding to the maximum intensity,which is used to adjust the waist radius.Based on the waist radius and energy ring,the cooperative ground users having the minimum angular square difference are selected.Also,the signal compensation scheme is proposed to decompose OAM signals in air-to-ground vortex wave communications.Simulation results are presented to verify the superiority of our proposed MUCR scheme.展开更多
Wireless communications in extreme environments,such as underwater and underground,is an essential technology for interconnecting various devices and enables data transmission and networking.Existing wireless technolo...Wireless communications in extreme environments,such as underwater and underground,is an essential technology for interconnecting various devices and enables data transmission and networking.Existing wireless technologies using electromagnetic(EM)waves face many known problems,such as high path loss,unpredictable multi-path fading,and large antenna size in the lossy medium.In this article,the magnetic induction(MI)based physical layer communication is introduced as a promising solution for wireless transmissions in extreme environments.Specifically,the fundamentals of the MI-based communications are reviewed.Then,with the goal of establishing reliable and low-power links between small-size devices,we review several key physical layer technologies for MI-based communications,including the MIbased signal modulations,magnetic beamforming,and relay transmissions,and summarize their state-of-theart research advances.Finally,the related open issues and challenges in each area are analyzed and presented for future investigations.展开更多
In this paper,we investigate a multi-UAV aided NOMA communication system,where multiple UAV-mounted aerial base stations are employed to serve ground users in the downlink NOMA communication,and each UAV serves its as...In this paper,we investigate a multi-UAV aided NOMA communication system,where multiple UAV-mounted aerial base stations are employed to serve ground users in the downlink NOMA communication,and each UAV serves its associated users on its own bandwidth.We aim at maximizing the overall common throughput in a finite time period.Such a problem is a typical mixed integer nonlinear problem,which involves both continuous-variable and combinatorial optimizations.To efficiently solve this problem,we propose a two-layer algorithm,which separately tackles continuous-variable and combinatorial optimization.Specifically,in the inner layer given one user association scheme,subproblems of bandwidth allocation,power allocation and trajectory design are solved based on alternating optimization.In the outer layer,a small number of candidate user association schemes are generated from an initial scheme and the best solution can be determined by comparing all the candidate schemes.In particular,a clustering algorithm based on K-means is applied to produce all candidate user association schemes,the successive convex optimization technique is adopted in the power allocation subproblem and a logistic function approximation approach is employed in the trajectory design subproblem.Simulation results show that the proposed NOMA scheme outperforms three baseline schemes in downlink common throughput,including one solution proposed in an existing literature.展开更多
To address the contradiction between the explosive growth of wireless data and the limited spectrum resources,semantic communication has been emerging as a promising communication paradigm.In this paper,we thus design...To address the contradiction between the explosive growth of wireless data and the limited spectrum resources,semantic communication has been emerging as a promising communication paradigm.In this paper,we thus design a speech semantic coded communication system,referred to as Deep-STS(i.e.,Deep-learning based Speech To Speech),for the lowbandwidth speech communication.Specifically,we first deeply compress the speech data through extracting the textual information from the speech based on the conformer encoder and connectionist temporal classification decoder at the transmitter side of Deep-STS system.In order to facilitate the final speech timbre recovery,we also extract the short-term timbre feature of speech signals only for the starting 2s duration by the long short-term memory network.Then,the Reed-Solomon coding and hybrid automatic repeat request protocol are applied to improve the reliability of transmitting the extracted text and timbre feature over the wireless channel.Third,we reconstruct the speech signal by the mel spectrogram prediction network and vocoder,when the extracted text is received along with the timbre feature at the receiver of Deep-STS system.Finally,we develop the demo system based on the USRP and GNU radio for the performance evaluation of Deep-STS.Numerical results show that the ac-Received:Jan.17,2024 Revised:Jun.12,2024 Editor:Niu Kai curacy of text extraction approaches 95%,and the mel cepstral distortion between the recovered speech signal and the original one in the spectrum domain is less than 10.Furthermore,the experimental results show that the proposed Deep-STS system can reduce the total delay of speech communication by 85%on average compared to the G.723 coding at the transmission rate of 5.4 kbps.More importantly,the coding rate of the proposed Deep-STS system is extremely low,only 0.2 kbps for continuous speech communication.It is worth noting that the Deep-STS with lower coding rate can support the low-zero-power speech communication,unveiling a new era in ultra-efficient coded communications.展开更多
Quantum secure direct communication(QSDC) is a communication method based on quantum mechanics and it is used to transmit secret messages. Unlike quantum key distribution, secret messages can be transmitted directly o...Quantum secure direct communication(QSDC) is a communication method based on quantum mechanics and it is used to transmit secret messages. Unlike quantum key distribution, secret messages can be transmitted directly on a quantum channel with QSDC. Higher channel capacity and noise suppression capabilities are key to achieving longdistance quantum communication. Here, we report a continuous-variable QSDC scheme based on mask-coding and orbital angular momentum, in which the mask-coding is employed to protect the security of the transmitting messages and to suppress the influence of excess noise. The combination of orbital angular momentum and information block transmission effectively improves the secrecy capacity. In the 800 information blocks ×1310 bits length 10-km experiment, the results show a statistical average bit error rate of 0.38%, a system excess noise value of 0.0184 SNU, and a final secrecy capacity of 6.319×10~6 bps. Therefore, this scheme reduces error bits while increasing secrecy capacity, providing a solution for long-distance large-scale quantum communication, which is capable of transmitting text, images and other information of reasonable size.展开更多
Wireless Sensor Network(WSN)comprises a set of interconnected,compact,autonomous,and resource-constrained sensor nodes that are wirelessly linked to monitor and gather data from the physical environment.WSNs are commo...Wireless Sensor Network(WSN)comprises a set of interconnected,compact,autonomous,and resource-constrained sensor nodes that are wirelessly linked to monitor and gather data from the physical environment.WSNs are commonly used in various applications such as environmental monitoring,surveillance,healthcare,agriculture,and industrial automation.Despite the benefits of WSN,energy efficiency remains a challenging problem that needs to be addressed.Clustering and routing can be considered effective solutions to accomplish energy efficiency in WSNs.Recent studies have reported that metaheuristic algorithms can be applied to optimize cluster formation and routing decisions.This study introduces a new Northern Goshawk Optimization with boosted coati optimization algorithm for cluster-based routing(NGOBCO-CBR)method for WSN.The proposed NGOBCO-CBR method resolves the hot spot problem,uneven load balancing,and energy consumption in WSN.The NGOBCO-CBR technique comprises two major processes such as NGO based clustering and BCO-based routing.In the initial phase,the NGObased clustering method is designed for cluster head(CH)selection and cluster construction using five input variables such as residual energy(RE),node proximity,load balancing,network average energy,and distance to BS(DBS).Besides,the NGOBCO-CBR technique applies the BCO algorithm for the optimum selection of routes to BS.The experimental results of the NGOBCOCBR technique are studied under different scenarios,and the obtained results showcased the improved efficiency of the NGOBCO-CBR technique over recent approaches in terms of different measures.展开更多
This paper concerns the exponential attitude-orbit coordinated control problems for gravitational-wave detection formation spacecraft systems.Notably,the large-scale communication delays resulting from oversized inter...This paper concerns the exponential attitude-orbit coordinated control problems for gravitational-wave detection formation spacecraft systems.Notably,the large-scale communication delays resulting from oversized inter-satellite distance of space-based laser interferometers are first modeled.Subject to the delayed communication behaviors,a new delay-dependent attitude-orbit coordinated controller is designed.Moreover,by reconstructing the less conservative Lyapunov-Krasovskii functional and free-weight matrices,sufficient criteria are derived to ensure the exponential stability of the closed-loop relative translation and attitude error system.Finally,a simulation example is employed to illustrate the numerical validity of the proposed controller for in-orbit detection missions.展开更多
The deployment of multiple intelligent reflecting surfaces(IRSs)in blockage-prone millimeter wave(mmWave)communication networks have garnered considerable attention lately.Despite the remarkably low circuit power cons...The deployment of multiple intelligent reflecting surfaces(IRSs)in blockage-prone millimeter wave(mmWave)communication networks have garnered considerable attention lately.Despite the remarkably low circuit power consumption per IRS element,the aggregate energy consumption becomes substantial if all elements of an IRS are turned on given a considerable number of IRSs,resulting in lower overall energy efficiency(EE).To tackle this challenge,we propose a flexible and efficient approach that individually controls the status of each IRS element.Specifically,the network EE is maximized by jointly optimizing the associations of base stations(BSs)and user equipments(UEs),transmit beamforming,phase shifts of IRS elements,and the associations of individual IRS elements and UEs.The problem is efficiently addressed in two phases.First,the Gale-Shapley algorithm is applied for BS-UE association,followed by a block coordinate descent-based algorithm that iteratively solves the subproblems related to active beamforming,phase shifts,and element-UE associations.To reduce the tremendous dimensionality of optimization variables introduced by element-UE associations in large-scale IRS networks,we introduce an efficient algorithm to solve the associations between IRS elements and UEs.Numerical results show that the proposed elementwise control scheme improves EE by 34.24% compared to the network with IRS-all-on scheme.展开更多
This paper studies the sensing base station(SBS)that has great potential to improve the safety of vehicles and pedestrians on roads.SBS can detect the targets on the road with communication signals using the integrate...This paper studies the sensing base station(SBS)that has great potential to improve the safety of vehicles and pedestrians on roads.SBS can detect the targets on the road with communication signals using the integrated sensing and communication(ISAC)technique.Compared with vehicle-mounted radar,SBS has a better sensing field due to its higher deployment position,which can help solve the problem of sensing blind areas.In this paper,key technologies of SBS are studied,including the beamforming algorithm,beam scanning scheme,and interference cancellation algorithm.To transmit and receive ISAC signals simultaneously,a double-coupling antenna array is applied.The free detection beam and directional communication beam are proposed for joint communication and sensing to meet the requirements of beamwidth and pointing directions.The joint timespace-frequency domain division multiple access algorithm is proposed to cancel the interference of SBS,including multiuser interference and duplex interference between sensing and communication.Finally,the sensing and communication performance of SBS under the industrial scientific medical power limitation is analyzed and simulated.Simulation results show that the communication rate of SBS can reach over 100 Mbps and the range of sensing and communication can reach about 500 m.展开更多
We consider an image semantic communication system in a time-varying fading Gaussian MIMO channel,with a finite number of channel states.A deep learning-aided broadcast approach scheme is proposed to benefit the adapt...We consider an image semantic communication system in a time-varying fading Gaussian MIMO channel,with a finite number of channel states.A deep learning-aided broadcast approach scheme is proposed to benefit the adaptive semantic transmission in terms of different channel states.We combine the classic broadcast approach with the image transformer to implement this adaptive joint source and channel coding(JSCC)scheme.Specifically,we utilize the neural network(NN)to jointly optimize the hierarchical image compression and superposition code mapping within this scheme.The learned transformers and codebooks allow recovering of the image with an adaptive quality and low error rate at the receiver side,in each channel state.The simulation results exhibit our proposed scheme can dynamically adapt the coding to the current channel state and outperform some existing intelligent schemes with the fixed coding block.展开更多
Lower Earth Orbit(LEO) satellite becomes an important part of complementing terrestrial communication due to its lower orbital altitude and smaller propagation delay than Geostationary satellite. However, the LEO sate...Lower Earth Orbit(LEO) satellite becomes an important part of complementing terrestrial communication due to its lower orbital altitude and smaller propagation delay than Geostationary satellite. However, the LEO satellite communication system cannot meet the requirements of users when the satellite-terrestrial link is blocked by obstacles. To solve this problem, we introduce Intelligent reflect surface(IRS) for improving the achievable rate of terrestrial users in LEO satellite communication. We investigated joint IRS scheduling, user scheduling, power and bandwidth allocation(JIRPB) optimization algorithm for improving LEO satellite system throughput.The optimization problem of joint user scheduling and resource allocation is formulated as a non-convex optimization problem. To cope with this problem, the nonconvex optimization problem is divided into resource allocation optimization sub-problem and scheduling optimization sub-problem firstly. Second, we optimize the resource allocation sub-problem via alternating direction multiplier method(ADMM) and scheduling sub-problem via Lagrangian dual method repeatedly.Third, we prove that the proposed resource allocation algorithm based ADMM approaches sublinear convergence theoretically. Finally, we demonstrate that the proposed JIRPB optimization algorithm improves the LEO satellite communication system throughput.展开更多
Code converters are essential in digital nano communication;therefore,a low-complexity optimal QCA layout for a BCD to Excess-3 code converter has been proposed in this paper.A QCA clockphase-based design technique wa...Code converters are essential in digital nano communication;therefore,a low-complexity optimal QCA layout for a BCD to Excess-3 code converter has been proposed in this paper.A QCA clockphase-based design technique was adopted to investigate integration with other complicated circuits.Using a unique XOR gate,the recommended circuit’s cell complexity has been decreased.The findings produced using the QCADesigner-2.0.3,a reliable simulation tool,prove the effectiveness of the current structure over earlier designs by considering the number of cells deployed,the area occupied,and the latency as design metrics.In addition,the popular tool QCAPro was used to estimate the energy dissipation of the proposed design.The proposed technique reduces the occupied space by∼40%,improves cell complexity by∼20%,and reduces energy dissipation by∼1.8 times(atγ=1.5EK)compared to the current scalable designs.This paper also studied the suggested structure’s energy dissipation and compared it to existing works for a better performance evaluation.展开更多
Degraded broadcast channels(DBC) are a typical multiuser communication scenario, Semantic communications over DBC still lack in-depth research. In this paper, we design a semantic communications approach based on mult...Degraded broadcast channels(DBC) are a typical multiuser communication scenario, Semantic communications over DBC still lack in-depth research. In this paper, we design a semantic communications approach based on multi-user semantic fusion for wireless image transmission over DBC. The transmitter extracts semantic features for two users separately and then effectively fuses them for broadcasting by leveraging semantic similarity. Unlike traditional allocation of time, power, or bandwidth, the semantic fusion scheme can dynamically control the weight of the semantic features of the two users to balance their performance. Considering the different channel state information(CSI) of both users over DBC,a DBC-Aware method is developed that embeds the CSI of both users into the joint source-channel coding encoder and fusion module to adapt to the channel.Experimental results show that the proposed system outperforms the traditional broadcasting schemes.展开更多
With the development of the transportation industry, the effective guidance of aircraft in an emergency to prevent catastrophic accidents remains one of the top safety concerns. Undoubtedly, operational status data of...With the development of the transportation industry, the effective guidance of aircraft in an emergency to prevent catastrophic accidents remains one of the top safety concerns. Undoubtedly, operational status data of the aircraft play an important role in the judgment and command of the Operational Control Center(OCC). However, how to transmit various operational status data from abnormal aircraft back to the OCC in an emergency is still an open problem. In this paper, we propose a novel Telemetry, Tracking,and Command(TT&C) architecture named Collaborative TT&C(CoTT&C) based on mega-constellation to solve such a problem. CoTT&C allows each satellite to help the abnormal aircraft by sharing TT&C resources when needed, realizing real-time and reliable aeronautical communication in an emergency. Specifically, we design a dynamic resource sharing mechanism for CoTT&C and model the mechanism as a single-leader-multi-follower Stackelberg game. Further, we give an unique Nash Equilibrium(NE) of the game as a closed form. Simulation results demonstrate that the proposed resource sharing mechanism is effective, incentive compatible, fair, and reciprocal. We hope that our findings can shed some light for future research on aeronautical communications in an emergency.展开更多
Improvement of integrated battlefield situational awareness in complex environments involving dynamic factors such as restricted communications and electromagnetic interference(EMI)has become a contentious research pr...Improvement of integrated battlefield situational awareness in complex environments involving dynamic factors such as restricted communications and electromagnetic interference(EMI)has become a contentious research problem.In certain mission environments,due to the impact of many interference sources on real-time communication or mission requirements such as the need to implement communication regulations,the mission stages are represented as a dynamic combination of several communication-available and communication-unavailable stages.Furthermore,the data interaction between unmanned aerial vehicles(UAVs)can only be performed in specific communication-available stages.Traditional cooperative search algorithms cannot handle such situations well.To solve this problem,this study constructed a distributed model predictive control(DMPC)architecture for a collaborative control of UAVs and used the Voronoi diagram generation method to re-plan the search areas of all UAVs in real time to avoid repetition of search areas and UAV collisions while improving the search efficiency and safety factor.An attention mechanism ant-colony optimization(AACO)algorithm is proposed for UAV search-control decision planning.The search strategy is adaptively updated by introducing an attention mechanism for regular instruction information,a priori information,and emergent information of the mission to satisfy different search expectations to the maximum extent.Simulation results show that the proposed algorithm achieves better search performance than traditional algorithms in restricted communication constraint scenarios.展开更多
Extremely large-scale multiple-input multiple-output(XL-MIMO)and terahertz(THz)communications are pivotal candidate technologies for supporting the development of 6G mobile networks.However,these techniques invalidate...Extremely large-scale multiple-input multiple-output(XL-MIMO)and terahertz(THz)communications are pivotal candidate technologies for supporting the development of 6G mobile networks.However,these techniques invalidate the common assumptions of far-field plane waves and introduce many new properties.To accurately understand the performance of these new techniques,spherical wave modeling of near-field communications needs to be applied for future research.Hence,the investigation of near-field communication holds significant importance for the advancement of 6G,which brings many new and open research challenges in contrast to conventional far-field communication.In this paper,we first formulate a general model of the near-field channel and discuss the influence of spatial nonstationary properties on the near-field channel modeling.Subsequently,we discuss the challenges encountered in the near field in terms of beam training,localization,and transmission scheme design,respectively.Finally,we point out some promising research directions for near-field communications.展开更多
The concept of semantic communication provides a novel approach for applications in scenarios with limited communication resources.In this paper,we propose an end-to-end(E2E)semantic molecular communication system,aim...The concept of semantic communication provides a novel approach for applications in scenarios with limited communication resources.In this paper,we propose an end-to-end(E2E)semantic molecular communication system,aiming to enhance the efficiency of molecular communication systems by reducing the transmitted information.Specifically,following the joint source channel coding paradigm,the network is designed to encode the task-relevant information into the concentration of the information molecules,which is robust to the degradation of the molecular communication channel.Furthermore,we propose a channel network to enable the E2E learning over the non-differentiable molecular channel.Experimental results demonstrate the superior performance of the semantic molecular communication system over the conventional methods in classification tasks.展开更多
Generative artificial intelligence(AI), as an emerging paradigm in content generation, has demonstrated its great potentials in creating high-fidelity data including images, texts, and videos. Nowadays wireless networ...Generative artificial intelligence(AI), as an emerging paradigm in content generation, has demonstrated its great potentials in creating high-fidelity data including images, texts, and videos. Nowadays wireless networks and applications have been rapidly evolving from achieving “connected things” to embracing “connected intelligence”.展开更多
基金supported by the Science and Technology Project of the State Grid Corporation of China(5400-202255158A-1-1-ZN).
文摘Frequent extreme disasters have led to frequent large-scale power outages in recent years.To quickly restore power,it is necessary to understand the damage information of the distribution network accurately.However,the public network communication system is easily damaged after disasters,causing the operation center to lose control of the distribution network.In this paper,we considered using satellites to transmit the distribution network data and focus on the resource scheduling problem of the satellite emergency communication system for the distribution network.Specifically,this paper first formulates the satellite beam-pointing problem and the accesschannel joint resource allocation problem.Then,this paper proposes the Priority-based Beam-pointing and Access-Channel joint optimization algorithm(PBAC),which uses convex optimization theory to solve the satellite beam pointing problem,and adopts the block coordinate descent method,Lagrangian dual method,and a greedy algorithm to solve the access-channel joint resource allocation problem,thereby obtaining the optimal resource scheduling scheme for the satellite network.Finally,this paper conducts comparative experiments with existing methods to verify the effec-tiveness of the proposed methods.The results show that the total weighted transmitted data of the proposed algorithm is increased by about 19.29∼26.29%compared with other algorithms.
文摘Generative artificial intelligence(AI),as an emerging paradigm in content generation,has demonstrated its great potentials in creating high-fidelity data including images,texts,and videos.Nowadays wireless networks and applications have been rapidly evolving from achieving“connected things”to embracing“connected intelligence”.
基金supported in part by National Natural Science Foundation of China under Grant 62441115 and 62201427in part by the Ministry of Industry and Information Technology of the People’s Republic of China under Grant CBG01N23-01-04.
文摘Orbital angular momentum(OAM)can achieve multifold increase of spectrum efficiency,but the hollow divergence characteristic and Line-of-Sight(LoS)path requirement impose the crucial challenges for vortex wave communications.For air-to-ground vortex wave communications,where there exists the LoS path,this paper proposes a multi-user cooperative receive(MUCR)scheme to break through the communication distance limitation caused by the characteristic of vortex wave hollow divergence.In particular,we derive the optimal radial position corresponding to the maximum intensity,which is used to adjust the waist radius.Based on the waist radius and energy ring,the cooperative ground users having the minimum angular square difference are selected.Also,the signal compensation scheme is proposed to decompose OAM signals in air-to-ground vortex wave communications.Simulation results are presented to verify the superiority of our proposed MUCR scheme.
文摘Wireless communications in extreme environments,such as underwater and underground,is an essential technology for interconnecting various devices and enables data transmission and networking.Existing wireless technologies using electromagnetic(EM)waves face many known problems,such as high path loss,unpredictable multi-path fading,and large antenna size in the lossy medium.In this article,the magnetic induction(MI)based physical layer communication is introduced as a promising solution for wireless transmissions in extreme environments.Specifically,the fundamentals of the MI-based communications are reviewed.Then,with the goal of establishing reliable and low-power links between small-size devices,we review several key physical layer technologies for MI-based communications,including the MIbased signal modulations,magnetic beamforming,and relay transmissions,and summarize their state-of-theart research advances.Finally,the related open issues and challenges in each area are analyzed and presented for future investigations.
基金supported by Beijing Natural Science Fund–Haidian Original Innovation Joint Fund(L232040 and L232045).
文摘In this paper,we investigate a multi-UAV aided NOMA communication system,where multiple UAV-mounted aerial base stations are employed to serve ground users in the downlink NOMA communication,and each UAV serves its associated users on its own bandwidth.We aim at maximizing the overall common throughput in a finite time period.Such a problem is a typical mixed integer nonlinear problem,which involves both continuous-variable and combinatorial optimizations.To efficiently solve this problem,we propose a two-layer algorithm,which separately tackles continuous-variable and combinatorial optimization.Specifically,in the inner layer given one user association scheme,subproblems of bandwidth allocation,power allocation and trajectory design are solved based on alternating optimization.In the outer layer,a small number of candidate user association schemes are generated from an initial scheme and the best solution can be determined by comparing all the candidate schemes.In particular,a clustering algorithm based on K-means is applied to produce all candidate user association schemes,the successive convex optimization technique is adopted in the power allocation subproblem and a logistic function approximation approach is employed in the trajectory design subproblem.Simulation results show that the proposed NOMA scheme outperforms three baseline schemes in downlink common throughput,including one solution proposed in an existing literature.
基金supported in part by National Natural Science Foundation of China under Grants 62122069,62071431,and 62201507.
文摘To address the contradiction between the explosive growth of wireless data and the limited spectrum resources,semantic communication has been emerging as a promising communication paradigm.In this paper,we thus design a speech semantic coded communication system,referred to as Deep-STS(i.e.,Deep-learning based Speech To Speech),for the lowbandwidth speech communication.Specifically,we first deeply compress the speech data through extracting the textual information from the speech based on the conformer encoder and connectionist temporal classification decoder at the transmitter side of Deep-STS system.In order to facilitate the final speech timbre recovery,we also extract the short-term timbre feature of speech signals only for the starting 2s duration by the long short-term memory network.Then,the Reed-Solomon coding and hybrid automatic repeat request protocol are applied to improve the reliability of transmitting the extracted text and timbre feature over the wireless channel.Third,we reconstruct the speech signal by the mel spectrogram prediction network and vocoder,when the extracted text is received along with the timbre feature at the receiver of Deep-STS system.Finally,we develop the demo system based on the USRP and GNU radio for the performance evaluation of Deep-STS.Numerical results show that the ac-Received:Jan.17,2024 Revised:Jun.12,2024 Editor:Niu Kai curacy of text extraction approaches 95%,and the mel cepstral distortion between the recovered speech signal and the original one in the spectrum domain is less than 10.Furthermore,the experimental results show that the proposed Deep-STS system can reduce the total delay of speech communication by 85%on average compared to the G.723 coding at the transmission rate of 5.4 kbps.More importantly,the coding rate of the proposed Deep-STS system is extremely low,only 0.2 kbps for continuous speech communication.It is worth noting that the Deep-STS with lower coding rate can support the low-zero-power speech communication,unveiling a new era in ultra-efficient coded communications.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 62071381 and 62301430)Shaanxi Fundamental Science Research Project for Mathematics and Physics (Grant No. 23JSY014)+1 种基金Scientific Research Plan Project of Shaanxi Education Department (Natural Science Special Project (Grant No. 23JK0680)Young Talent Fund of Xi’an Association for Science and Technology (Grant No. 959202313011)。
文摘Quantum secure direct communication(QSDC) is a communication method based on quantum mechanics and it is used to transmit secret messages. Unlike quantum key distribution, secret messages can be transmitted directly on a quantum channel with QSDC. Higher channel capacity and noise suppression capabilities are key to achieving longdistance quantum communication. Here, we report a continuous-variable QSDC scheme based on mask-coding and orbital angular momentum, in which the mask-coding is employed to protect the security of the transmitting messages and to suppress the influence of excess noise. The combination of orbital angular momentum and information block transmission effectively improves the secrecy capacity. In the 800 information blocks ×1310 bits length 10-km experiment, the results show a statistical average bit error rate of 0.38%, a system excess noise value of 0.0184 SNU, and a final secrecy capacity of 6.319×10~6 bps. Therefore, this scheme reduces error bits while increasing secrecy capacity, providing a solution for long-distance large-scale quantum communication, which is capable of transmitting text, images and other information of reasonable size.
文摘Wireless Sensor Network(WSN)comprises a set of interconnected,compact,autonomous,and resource-constrained sensor nodes that are wirelessly linked to monitor and gather data from the physical environment.WSNs are commonly used in various applications such as environmental monitoring,surveillance,healthcare,agriculture,and industrial automation.Despite the benefits of WSN,energy efficiency remains a challenging problem that needs to be addressed.Clustering and routing can be considered effective solutions to accomplish energy efficiency in WSNs.Recent studies have reported that metaheuristic algorithms can be applied to optimize cluster formation and routing decisions.This study introduces a new Northern Goshawk Optimization with boosted coati optimization algorithm for cluster-based routing(NGOBCO-CBR)method for WSN.The proposed NGOBCO-CBR method resolves the hot spot problem,uneven load balancing,and energy consumption in WSN.The NGOBCO-CBR technique comprises two major processes such as NGO based clustering and BCO-based routing.In the initial phase,the NGObased clustering method is designed for cluster head(CH)selection and cluster construction using five input variables such as residual energy(RE),node proximity,load balancing,network average energy,and distance to BS(DBS).Besides,the NGOBCO-CBR technique applies the BCO algorithm for the optimum selection of routes to BS.The experimental results of the NGOBCOCBR technique are studied under different scenarios,and the obtained results showcased the improved efficiency of the NGOBCO-CBR technique over recent approaches in terms of different measures.
基金supported by the Na⁃tional Key R&D Program of China(No.2022YFC2204800)the Graduate Student Independent Exploration and Innovation Program of Central South University(No.2024ZZTS 0767).
文摘This paper concerns the exponential attitude-orbit coordinated control problems for gravitational-wave detection formation spacecraft systems.Notably,the large-scale communication delays resulting from oversized inter-satellite distance of space-based laser interferometers are first modeled.Subject to the delayed communication behaviors,a new delay-dependent attitude-orbit coordinated controller is designed.Moreover,by reconstructing the less conservative Lyapunov-Krasovskii functional and free-weight matrices,sufficient criteria are derived to ensure the exponential stability of the closed-loop relative translation and attitude error system.Finally,a simulation example is employed to illustrate the numerical validity of the proposed controller for in-orbit detection missions.
基金supported by the National Natural Science Foundation of China under grant U22A2003 and 62271515Shenzhen Science and Technology Program under grant ZDSYS20210623091807023supported by the National Natural Science Foundation of China under Grant 62301300.
文摘The deployment of multiple intelligent reflecting surfaces(IRSs)in blockage-prone millimeter wave(mmWave)communication networks have garnered considerable attention lately.Despite the remarkably low circuit power consumption per IRS element,the aggregate energy consumption becomes substantial if all elements of an IRS are turned on given a considerable number of IRSs,resulting in lower overall energy efficiency(EE).To tackle this challenge,we propose a flexible and efficient approach that individually controls the status of each IRS element.Specifically,the network EE is maximized by jointly optimizing the associations of base stations(BSs)and user equipments(UEs),transmit beamforming,phase shifts of IRS elements,and the associations of individual IRS elements and UEs.The problem is efficiently addressed in two phases.First,the Gale-Shapley algorithm is applied for BS-UE association,followed by a block coordinate descent-based algorithm that iteratively solves the subproblems related to active beamforming,phase shifts,and element-UE associations.To reduce the tremendous dimensionality of optimization variables introduced by element-UE associations in large-scale IRS networks,we introduce an efficient algorithm to solve the associations between IRS elements and UEs.Numerical results show that the proposed elementwise control scheme improves EE by 34.24% compared to the network with IRS-all-on scheme.
基金supported in part by the National Natural Science Foundation of China under Grant U21B2014,Grant 92267202,and Grant 62271081.
文摘This paper studies the sensing base station(SBS)that has great potential to improve the safety of vehicles and pedestrians on roads.SBS can detect the targets on the road with communication signals using the integrated sensing and communication(ISAC)technique.Compared with vehicle-mounted radar,SBS has a better sensing field due to its higher deployment position,which can help solve the problem of sensing blind areas.In this paper,key technologies of SBS are studied,including the beamforming algorithm,beam scanning scheme,and interference cancellation algorithm.To transmit and receive ISAC signals simultaneously,a double-coupling antenna array is applied.The free detection beam and directional communication beam are proposed for joint communication and sensing to meet the requirements of beamwidth and pointing directions.The joint timespace-frequency domain division multiple access algorithm is proposed to cancel the interference of SBS,including multiuser interference and duplex interference between sensing and communication.Finally,the sensing and communication performance of SBS under the industrial scientific medical power limitation is analyzed and simulated.Simulation results show that the communication rate of SBS can reach over 100 Mbps and the range of sensing and communication can reach about 500 m.
基金supported in part by the National Key R&D Project of China under Grant 2020YFA0712300National Natural Science Foundation of China under Grant NSFC-62231022,12031011supported in part by the NSF of China under Grant 62125108。
文摘We consider an image semantic communication system in a time-varying fading Gaussian MIMO channel,with a finite number of channel states.A deep learning-aided broadcast approach scheme is proposed to benefit the adaptive semantic transmission in terms of different channel states.We combine the classic broadcast approach with the image transformer to implement this adaptive joint source and channel coding(JSCC)scheme.Specifically,we utilize the neural network(NN)to jointly optimize the hierarchical image compression and superposition code mapping within this scheme.The learned transformers and codebooks allow recovering of the image with an adaptive quality and low error rate at the receiver side,in each channel state.The simulation results exhibit our proposed scheme can dynamically adapt the coding to the current channel state and outperform some existing intelligent schemes with the fixed coding block.
基金supported by the National Key R&D Program of China under Grant 2020YFB1807900the National Natural Science Foundation of China (NSFC) under Grant 61931005Beijing University of Posts and Telecommunications-China Mobile Research Institute Joint Innovation Center。
文摘Lower Earth Orbit(LEO) satellite becomes an important part of complementing terrestrial communication due to its lower orbital altitude and smaller propagation delay than Geostationary satellite. However, the LEO satellite communication system cannot meet the requirements of users when the satellite-terrestrial link is blocked by obstacles. To solve this problem, we introduce Intelligent reflect surface(IRS) for improving the achievable rate of terrestrial users in LEO satellite communication. We investigated joint IRS scheduling, user scheduling, power and bandwidth allocation(JIRPB) optimization algorithm for improving LEO satellite system throughput.The optimization problem of joint user scheduling and resource allocation is formulated as a non-convex optimization problem. To cope with this problem, the nonconvex optimization problem is divided into resource allocation optimization sub-problem and scheduling optimization sub-problem firstly. Second, we optimize the resource allocation sub-problem via alternating direction multiplier method(ADMM) and scheduling sub-problem via Lagrangian dual method repeatedly.Third, we prove that the proposed resource allocation algorithm based ADMM approaches sublinear convergence theoretically. Finally, we demonstrate that the proposed JIRPB optimization algorithm improves the LEO satellite communication system throughput.
文摘Code converters are essential in digital nano communication;therefore,a low-complexity optimal QCA layout for a BCD to Excess-3 code converter has been proposed in this paper.A QCA clockphase-based design technique was adopted to investigate integration with other complicated circuits.Using a unique XOR gate,the recommended circuit’s cell complexity has been decreased.The findings produced using the QCADesigner-2.0.3,a reliable simulation tool,prove the effectiveness of the current structure over earlier designs by considering the number of cells deployed,the area occupied,and the latency as design metrics.In addition,the popular tool QCAPro was used to estimate the energy dissipation of the proposed design.The proposed technique reduces the occupied space by∼40%,improves cell complexity by∼20%,and reduces energy dissipation by∼1.8 times(atγ=1.5EK)compared to the current scalable designs.This paper also studied the suggested structure’s energy dissipation and compared it to existing works for a better performance evaluation.
基金supported in part by National Key R&D Project of China (2023YFB2906201)the National Natural Science Foundation of China (62222111, 62125108 and 62431015)the Fundamental Research Funds for the Central Universities。
文摘Degraded broadcast channels(DBC) are a typical multiuser communication scenario, Semantic communications over DBC still lack in-depth research. In this paper, we design a semantic communications approach based on multi-user semantic fusion for wireless image transmission over DBC. The transmitter extracts semantic features for two users separately and then effectively fuses them for broadcasting by leveraging semantic similarity. Unlike traditional allocation of time, power, or bandwidth, the semantic fusion scheme can dynamically control the weight of the semantic features of the two users to balance their performance. Considering the different channel state information(CSI) of both users over DBC,a DBC-Aware method is developed that embeds the CSI of both users into the joint source-channel coding encoder and fusion module to adapt to the channel.Experimental results show that the proposed system outperforms the traditional broadcasting schemes.
基金supported by the National Natural Science Foundation of China under Grant 62131012/61971261。
文摘With the development of the transportation industry, the effective guidance of aircraft in an emergency to prevent catastrophic accidents remains one of the top safety concerns. Undoubtedly, operational status data of the aircraft play an important role in the judgment and command of the Operational Control Center(OCC). However, how to transmit various operational status data from abnormal aircraft back to the OCC in an emergency is still an open problem. In this paper, we propose a novel Telemetry, Tracking,and Command(TT&C) architecture named Collaborative TT&C(CoTT&C) based on mega-constellation to solve such a problem. CoTT&C allows each satellite to help the abnormal aircraft by sharing TT&C resources when needed, realizing real-time and reliable aeronautical communication in an emergency. Specifically, we design a dynamic resource sharing mechanism for CoTT&C and model the mechanism as a single-leader-multi-follower Stackelberg game. Further, we give an unique Nash Equilibrium(NE) of the game as a closed form. Simulation results demonstrate that the proposed resource sharing mechanism is effective, incentive compatible, fair, and reciprocal. We hope that our findings can shed some light for future research on aeronautical communications in an emergency.
基金the support of the National Natural Science Foundation of China(Grant No.62076204)the Seed Foundation of Innovation and Creation for Graduate Students in Northwestern Polytechnical University(Grant No.CX2020019)in part by the China Postdoctoral Science Foundation(Grants No.2021M700337)。
文摘Improvement of integrated battlefield situational awareness in complex environments involving dynamic factors such as restricted communications and electromagnetic interference(EMI)has become a contentious research problem.In certain mission environments,due to the impact of many interference sources on real-time communication or mission requirements such as the need to implement communication regulations,the mission stages are represented as a dynamic combination of several communication-available and communication-unavailable stages.Furthermore,the data interaction between unmanned aerial vehicles(UAVs)can only be performed in specific communication-available stages.Traditional cooperative search algorithms cannot handle such situations well.To solve this problem,this study constructed a distributed model predictive control(DMPC)architecture for a collaborative control of UAVs and used the Voronoi diagram generation method to re-plan the search areas of all UAVs in real time to avoid repetition of search areas and UAV collisions while improving the search efficiency and safety factor.An attention mechanism ant-colony optimization(AACO)algorithm is proposed for UAV search-control decision planning.The search strategy is adaptively updated by introducing an attention mechanism for regular instruction information,a priori information,and emergent information of the mission to satisfy different search expectations to the maximum extent.Simulation results show that the proposed algorithm achieves better search performance than traditional algorithms in restricted communication constraint scenarios.
基金supported in part by National Key Research and Develop⁃ment Young Scientist Project 2023YFB2905100the National Natural Sci⁃ence Foundation of China under Grant Nos.62201137 and 62331023+1 种基金the Fundamental Research Funds for the Central Universities under Grant No.2242022k60001the Research Fund of National Mobile Communications Research Laboratory,Southeast University,China under Grant No.2023A03.
文摘Extremely large-scale multiple-input multiple-output(XL-MIMO)and terahertz(THz)communications are pivotal candidate technologies for supporting the development of 6G mobile networks.However,these techniques invalidate the common assumptions of far-field plane waves and introduce many new properties.To accurately understand the performance of these new techniques,spherical wave modeling of near-field communications needs to be applied for future research.Hence,the investigation of near-field communication holds significant importance for the advancement of 6G,which brings many new and open research challenges in contrast to conventional far-field communication.In this paper,we first formulate a general model of the near-field channel and discuss the influence of spatial nonstationary properties on the near-field channel modeling.Subsequently,we discuss the challenges encountered in the near field in terms of beam training,localization,and transmission scheme design,respectively.Finally,we point out some promising research directions for near-field communications.
基金supported by the Beijing Natural Science Foundation(L211012)the Natural Science Foundation of China(62122012,62221001)the Fundamental Research Funds for the Central Universities(2022JBQY004)。
文摘The concept of semantic communication provides a novel approach for applications in scenarios with limited communication resources.In this paper,we propose an end-to-end(E2E)semantic molecular communication system,aiming to enhance the efficiency of molecular communication systems by reducing the transmitted information.Specifically,following the joint source channel coding paradigm,the network is designed to encode the task-relevant information into the concentration of the information molecules,which is robust to the degradation of the molecular communication channel.Furthermore,we propose a channel network to enable the E2E learning over the non-differentiable molecular channel.Experimental results demonstrate the superior performance of the semantic molecular communication system over the conventional methods in classification tasks.
文摘Generative artificial intelligence(AI), as an emerging paradigm in content generation, has demonstrated its great potentials in creating high-fidelity data including images, texts, and videos. Nowadays wireless networks and applications have been rapidly evolving from achieving “connected things” to embracing “connected intelligence”.