A task allocation problem for the heterogeneous unmanned aerial vehicle (UAV) swarm in unknown environments is studied in this paper.Considering that the actual mission environment information may be unknown,the UAV s...A task allocation problem for the heterogeneous unmanned aerial vehicle (UAV) swarm in unknown environments is studied in this paper.Considering that the actual mission environment information may be unknown,the UAV swarm needs to detect the environment first and then attack the detected targets.The heterogeneity of UAVs,multiple types of tasks,and the dynamic nature of task environment lead to uneven load and time sequence problems.This paper proposes an improved contract net protocol (CNP) based task allocation scheme,which effectively balances the load of UAVs and improves the task efficiency.Firstly,two types of task models are established,including regional reconnaissance tasks and target attack tasks.Secondly,for regional reconnaissance tasks,an improved CNP algorithm using the uncertain contract is developed.Through uncertain contracts,the area size of the regional reconnaissance task is determined adaptively after this task assignment,which can improve reconnaissance efficiency and resource utilization.Thirdly,for target attack tasks,an improved CNP algorithm using the fuzzy integrated evaluation and the double-layer negotiation is presented to enhance collaborative attack efficiency through adjusting the assignment sequence adaptively and multi-layer allocation.Finally,the effectiveness and advantages of the improved method are verified through comparison simulations.展开更多
The earth observation satellites(EOSs)scheduling problem for emergency tasks often presents many challenges.For example,the scheduling calculation should be completed in seconds,the scheduled task rate is supposed to ...The earth observation satellites(EOSs)scheduling problem for emergency tasks often presents many challenges.For example,the scheduling calculation should be completed in seconds,the scheduled task rate is supposed to be as high as possible,the disturbance measure of the scheme should be as low as possible,which may lead to the loss of important observation opportunities and data transmission delays.Existing scheduling algorithms are not designed for these requirements.Consequently,we propose a rolling horizon strategy(RHS)based on event triggering as well as a heuristic algorithm based on direct insertion,shifting,backtracking,deletion,and reinsertion(ISBDR).In the RHS,the driven scheduling mode based on the emergency task arrival and control station time window events are designed to transform the long-term,large-scale problem into a short-term,small-scale problem,which can improve the schedulability of the original scheduling scheme and emergency response sensitivity.In the ISBDR algorithm,the shifting rule with breadth search capability and backtracking rule with depth search capability are established to realize the rapid adjustment of the original plan and improve the overall benefit of the plan and early completion of emergency tasks.Simultaneously,two heuristic factors,namely the emergency task urgency degree and task conflict degree,are constructed to improve the emergency task scheduling guidance and algorithm efficiency.Finally,we conduct extensive experiments by means of simulations to compare the algorithms based on ISBDR and direct insertion,shifting,deletion,and reinsertion(ISDR).The results demonstrate that the proposed algorithm can improve the timeliness of emergency tasks and scheduling performance,and decrease the disturbance measure of the scheme,therefore,it is more suitable for emergency task scheduling.展开更多
Heterogeneous computing is one effective method of high performance computing with many advantages. Task scheduling is a critical issue in heterogeneous environments as well as in homogeneous environments. A number of...Heterogeneous computing is one effective method of high performance computing with many advantages. Task scheduling is a critical issue in heterogeneous environments as well as in homogeneous environments. A number of task scheduling algorithms for homogeneous environments have been proposed, whereas, a few for heterogeneous environments can be found in the literature. A novel task scheduling algorithm for heterogeneous environments, called the heterogeneous critical task (HCT) scheduling algorithm is presented. By means of the directed acyclic graph and the gantt graph, the HCT algorithm defines the critical task and the idle time slot. After determining the critical tasks of a given task, the HCT algorithm tentatively duplicates the critical tasks onto the processor that has the given task in the idle time slot, to reduce the start time of the given task. To compare the performance of the HCT algorithm with several recently proposed algorithms, a large set of randomly generated applications and the Gaussian elimination application are randomly generated. The experimental result has shown that the HCT algorithm outperforms the other algorithm.展开更多
To solve the problem of distributed tasks-platforms scheduling in holonic command and control(C2) organization,the basic elements of the organization are analyzed firstly and the formal description of organizational e...To solve the problem of distributed tasks-platforms scheduling in holonic command and control(C2) organization,the basic elements of the organization are analyzed firstly and the formal description of organizational elements and structure is provided. Based on the improvement of task execution quality,a single task resource scheduling model is established and the solving method based on the m-best algorithm is proposed. For the problem of tactical decision-holon cannot handle tasks with low priority effectively, a distributed resource scheduling collaboration mechanism based on platform pricing and a platform exchange mechanism based on resource capacities are designed. Finally,a series of experiments are designed to prove the effectiveness of these methods. The results show that the proposed distributed scheduling methods can realize the effective balance of platform resources.展开更多
Satellite observation scheduling plays a significant role in improving the efficiency of satellite observation systems.Although many scheduling algorithms have been proposed,emergency tasks,characterized as importance...Satellite observation scheduling plays a significant role in improving the efficiency of satellite observation systems.Although many scheduling algorithms have been proposed,emergency tasks,characterized as importance and urgency(e.g.,observation tasks orienting to the earthquake area and military conflict area),have not been taken into account yet.Therefore,it is crucial to investigate the satellite integrated scheduling methods,which focus on meeting the requirements of emergency tasks while maximizing the profit of common tasks.Firstly,a pretreatment approach is proposed,which eliminates conflicts among emergency tasks and allocates all tasks with a potential time-window to related orbits of satellites.Secondly,a mathematical model and an acyclic directed graph model are constructed.Thirdly,a hybrid ant colony optimization method mixed with iteration local search(ACO-ILS) is established to solve the problem.Moreover,to guarantee all solutions satisfying the emergency task requirement constraints,a constraint repair method is presented.Extensive experimental simulations show that the proposed integrated scheduling method is superior to two-phased scheduling methods,the performance of ACO-ILS is greatly improved in both evolution speed and solution quality by iteration local search,and ACO-ILS outperforms both genetic algorithm and simulated annealing algorithm.展开更多
In a periodic real-time system scheduled with the Earliest Deadline First (EDF) algorithm,it is necessary to compress some current tasks to avoid overloading if new task requests to run. Compressing a task means that ...In a periodic real-time system scheduled with the Earliest Deadline First (EDF) algorithm,it is necessary to compress some current tasks to avoid overloading if new task requests to run. Compressing a task means that its period is prolonged while its computation time keeps unchanged. An interesting problem is to find the earliest time to release new tasks without any deadline missing,that is,the earliest smooth insertion time. In this paper,a general frame to calculate the earliest time with multiple rounds of deadline checking is given,which shows that the checking can be done from the request time of the new tasks. A smart way is provided and proved,which takes the value of theΔchecking of the current round as the time step to the next. These techniques potentially reduce the amount of the calculation and the number of the rounds of the checking to get the earliest time. Simulation results are also given to support the conclusion.展开更多
The emergent task is a kind of uncertain event that satellite systems often encounter in the application process.In this paper,the multi-satellite distributed coordinating and scheduling problem considering emergent t...The emergent task is a kind of uncertain event that satellite systems often encounter in the application process.In this paper,the multi-satellite distributed coordinating and scheduling problem considering emergent tasks is studied.Due to the limitation of onboard computational resources and time,common online onboard rescheduling methods for such problems usually adopt simple greedy methods,sacrificing the solution quality to deliver timely solutions.To better solve the problem,a new multi-satellite onboard scheduling and coordinating framework based on multi-solution integration is proposed.This method uses high computational power on the ground and generates multiple solutions,changing the complex onboard rescheduling problem to a solution selection problem.With this method,it is possible that little time is used to generate a solution that is as good as the solutions on the ground.We further propose several multi-satellite coordination methods based on the multi-agent Markov decision process(MMDP)and mixed-integer programming(MIP).These methods enable the satellite to make independent decisions and produce high-quality solutions.Compared with the traditional centralized scheduling method,the proposed distributed method reduces the cost of satellite communication and increases the response speed for emergent tasks.Extensive experiments show that the proposed multi-solution integration framework and the distributed coordinating strategies are efficient and effective for onboard scheduling considering emergent tasks.展开更多
With the rapid development of cloud computing and control theory, a new paradigm of networked control systems called cloud control systems is proposed to meet the requirements of large-scale and complex applications. ...With the rapid development of cloud computing and control theory, a new paradigm of networked control systems called cloud control systems is proposed to meet the requirements of large-scale and complex applications. Currently, cloud control systems are mainly built by using a centralized architecture. The centralized system is overly dependent on the central control plane and has huge challenges in large-scale heterogeneous node systems. In this paper, we propose a decentralized approach to establish cloud control systems by proposing a distributed point-to-point task routing method. A considerable number of tasks in the system will not rely on the central plane and will be directly routed to the target devices through the pointto-point routing method, which improves the horizontal scalability of the cloud control system. The point-to-point routing method directly gives a unique address to every task, making inter-task communication more efficient in a complex heterogeneous and busy cloud control systems. Finally, we experimentally demonstrate that the distributed point-to-point task routing approach is compatible against the state-of-the-art central systems in large-scale task situations.展开更多
目的:探讨酸敏感离子通道1a(ASIC1a)、弱内向整流钾通道相关的酸敏感钾通道1和3(TASK-1和TASK-3)在大鼠癫痫持续状态(SE)中的表达及其在癫痫持续状态中的作用.方法:成年雄性SD大鼠随机分为对照组(control)和SE组,应用氯化锂-匹罗卡品诱...目的:探讨酸敏感离子通道1a(ASIC1a)、弱内向整流钾通道相关的酸敏感钾通道1和3(TASK-1和TASK-3)在大鼠癫痫持续状态(SE)中的表达及其在癫痫持续状态中的作用.方法:成年雄性SD大鼠随机分为对照组(control)和SE组,应用氯化锂-匹罗卡品诱导SE模型,采用real time RT-PCR和Western Blot技术分别检测海马组织ASIC1a、TASK-1和TASK-3在SE后0、1、2和3 h mRNA、蛋白表达水平,应用膜片钳技术观察SE后ASIC1a、TASK-1和TASK-3对海马CA1区锥体神经元兴奋性的影响.结果:在mRNA水平,与control组相比,SE组ASIC1a在2和3h、TASK-1在1h、TASK-3在3h时间点表达显著减少.在蛋白水平,与control组相比,SE组ASIC1a、TASK-1和TASK-3在3h时间点表达均显著降低.与SE control组相比,给予ASIC1a抑制剂后动作电位(AP)的频率明显降低,给予TASK-1和TASK-3抑制剂后,AP的频率均显著增加.结论:SE后大鼠海马区ASIC1a、TASK-1和TASK-3表达下调,且ASIC1a、TASK-1和TASK-3改变了海马CA1区锥体神经元的兴奋性,参与了SE的发生过程.展开更多
Based on the wave attack task planning method in static complex environment and the rolling optimization framework, an online task planning method in dynamic complex environment based on rolling optimization is propos...Based on the wave attack task planning method in static complex environment and the rolling optimization framework, an online task planning method in dynamic complex environment based on rolling optimization is proposed. In the process of online task planning in dynamic complex environment,online task planning is based on event triggering including target information update event, new target addition event, target failure event, weapon failure event, etc., and the methods include defense area reanalysis, parameter space update, and mission re-planning. Simulation is conducted for different events and the result shows that the index value of the attack scenario after re-planning is better than that before re-planning and according to the probability distribution of statistical simulation method, the index value distribution after re-planning is obviously in the region of high index value, and the index value gap before and after re-planning is related to the degree of posture change.展开更多
Pooling,unpooling/specialization,and discretionary task completion are typical operational strategies in queueing systems that arise in healthcare,call centers,and online sales.These strategies may have advantages and...Pooling,unpooling/specialization,and discretionary task completion are typical operational strategies in queueing systems that arise in healthcare,call centers,and online sales.These strategies may have advantages and disadvantages in different operational environments.This paper uses the M/M/1 and M/M/2 queues to study the impact of pooling,specialization,and discretionary task completion on the average queue length.Closed-form solutions for the average M/M/2 queue length are derived.Computational examples illustrate how the average queue length changes with the strength of pooling,specialization,and discretionary task completion.Finally,several conjectures are made in the paper.展开更多
This paper,by using the theory of Seven Building Tasks to analyze the Prose The Great Goal2 which was ever analyzed from the perspective of theme and rheme structure,aims to demonstrate the application of the new theo...This paper,by using the theory of Seven Building Tasks to analyze the Prose The Great Goal2 which was ever analyzed from the perspective of theme and rheme structure,aims to demonstrate the application of the new theory Severn Building Tasks to analyzing an essay,and thus provide a fresh theory and approach for English learners to analyze prose and learn the English language.展开更多
A dynamic multi-beam resource allocation algorithm for large low Earth orbit(LEO)constellation based on on-board distributed computing is proposed in this paper.The allocation is a combinatorial optimization process u...A dynamic multi-beam resource allocation algorithm for large low Earth orbit(LEO)constellation based on on-board distributed computing is proposed in this paper.The allocation is a combinatorial optimization process under a series of complex constraints,which is important for enhancing the matching between resources and requirements.A complex algorithm is not available because that the LEO on-board resources is limi-ted.The proposed genetic algorithm(GA)based on two-dimen-sional individual model and uncorrelated single paternal inheri-tance method is designed to support distributed computation to enhance the feasibility of on-board application.A distributed system composed of eight embedded devices is built to verify the algorithm.A typical scenario is built in the system to evalu-ate the resource allocation process,algorithm mathematical model,trigger strategy,and distributed computation architec-ture.According to the simulation and measurement results,the proposed algorithm can provide an allocation result for more than 1500 tasks in 14 s and the success rate is more than 91%in a typical scene.The response time is decreased by 40%com-pared with the conditional GA.展开更多
基金National Natural Science Foundation of China (12202293)Sichuan Science and Technology Program (2023NSFSC0393,2022NSFSC1952)。
文摘A task allocation problem for the heterogeneous unmanned aerial vehicle (UAV) swarm in unknown environments is studied in this paper.Considering that the actual mission environment information may be unknown,the UAV swarm needs to detect the environment first and then attack the detected targets.The heterogeneity of UAVs,multiple types of tasks,and the dynamic nature of task environment lead to uneven load and time sequence problems.This paper proposes an improved contract net protocol (CNP) based task allocation scheme,which effectively balances the load of UAVs and improves the task efficiency.Firstly,two types of task models are established,including regional reconnaissance tasks and target attack tasks.Secondly,for regional reconnaissance tasks,an improved CNP algorithm using the uncertain contract is developed.Through uncertain contracts,the area size of the regional reconnaissance task is determined adaptively after this task assignment,which can improve reconnaissance efficiency and resource utilization.Thirdly,for target attack tasks,an improved CNP algorithm using the fuzzy integrated evaluation and the double-layer negotiation is presented to enhance collaborative attack efficiency through adjusting the assignment sequence adaptively and multi-layer allocation.Finally,the effectiveness and advantages of the improved method are verified through comparison simulations.
基金supported by the National Natural Science Foundation of China(71671059)
文摘The earth observation satellites(EOSs)scheduling problem for emergency tasks often presents many challenges.For example,the scheduling calculation should be completed in seconds,the scheduled task rate is supposed to be as high as possible,the disturbance measure of the scheme should be as low as possible,which may lead to the loss of important observation opportunities and data transmission delays.Existing scheduling algorithms are not designed for these requirements.Consequently,we propose a rolling horizon strategy(RHS)based on event triggering as well as a heuristic algorithm based on direct insertion,shifting,backtracking,deletion,and reinsertion(ISBDR).In the RHS,the driven scheduling mode based on the emergency task arrival and control station time window events are designed to transform the long-term,large-scale problem into a short-term,small-scale problem,which can improve the schedulability of the original scheduling scheme and emergency response sensitivity.In the ISBDR algorithm,the shifting rule with breadth search capability and backtracking rule with depth search capability are established to realize the rapid adjustment of the original plan and improve the overall benefit of the plan and early completion of emergency tasks.Simultaneously,two heuristic factors,namely the emergency task urgency degree and task conflict degree,are constructed to improve the emergency task scheduling guidance and algorithm efficiency.Finally,we conduct extensive experiments by means of simulations to compare the algorithms based on ISBDR and direct insertion,shifting,deletion,and reinsertion(ISDR).The results demonstrate that the proposed algorithm can improve the timeliness of emergency tasks and scheduling performance,and decrease the disturbance measure of the scheme,therefore,it is more suitable for emergency task scheduling.
文摘Heterogeneous computing is one effective method of high performance computing with many advantages. Task scheduling is a critical issue in heterogeneous environments as well as in homogeneous environments. A number of task scheduling algorithms for homogeneous environments have been proposed, whereas, a few for heterogeneous environments can be found in the literature. A novel task scheduling algorithm for heterogeneous environments, called the heterogeneous critical task (HCT) scheduling algorithm is presented. By means of the directed acyclic graph and the gantt graph, the HCT algorithm defines the critical task and the idle time slot. After determining the critical tasks of a given task, the HCT algorithm tentatively duplicates the critical tasks onto the processor that has the given task in the idle time slot, to reduce the start time of the given task. To compare the performance of the HCT algorithm with several recently proposed algorithms, a large set of randomly generated applications and the Gaussian elimination application are randomly generated. The experimental result has shown that the HCT algorithm outperforms the other algorithm.
基金supported by the National Natural Science Foundation of China(6157301761703425)+2 种基金the Aeronautical Science Fund(20175796014)Shaanxi Province Natural Science Foundation(2016JQ60622017JM6062)
文摘To solve the problem of distributed tasks-platforms scheduling in holonic command and control(C2) organization,the basic elements of the organization are analyzed firstly and the formal description of organizational elements and structure is provided. Based on the improvement of task execution quality,a single task resource scheduling model is established and the solving method based on the m-best algorithm is proposed. For the problem of tactical decision-holon cannot handle tasks with low priority effectively, a distributed resource scheduling collaboration mechanism based on platform pricing and a platform exchange mechanism based on resource capacities are designed. Finally,a series of experiments are designed to prove the effectiveness of these methods. The results show that the proposed distributed scheduling methods can realize the effective balance of platform resources.
基金supported by the National Natural Science Foundation of China (61104180)the National Basic Research Program of China(973 Program) (97361361)
文摘Satellite observation scheduling plays a significant role in improving the efficiency of satellite observation systems.Although many scheduling algorithms have been proposed,emergency tasks,characterized as importance and urgency(e.g.,observation tasks orienting to the earthquake area and military conflict area),have not been taken into account yet.Therefore,it is crucial to investigate the satellite integrated scheduling methods,which focus on meeting the requirements of emergency tasks while maximizing the profit of common tasks.Firstly,a pretreatment approach is proposed,which eliminates conflicts among emergency tasks and allocates all tasks with a potential time-window to related orbits of satellites.Secondly,a mathematical model and an acyclic directed graph model are constructed.Thirdly,a hybrid ant colony optimization method mixed with iteration local search(ACO-ILS) is established to solve the problem.Moreover,to guarantee all solutions satisfying the emergency task requirement constraints,a constraint repair method is presented.Extensive experimental simulations show that the proposed integrated scheduling method is superior to two-phased scheduling methods,the performance of ACO-ILS is greatly improved in both evolution speed and solution quality by iteration local search,and ACO-ILS outperforms both genetic algorithm and simulated annealing algorithm.
基金Changsha Municipal Science and Technology Foundation(K15ZD053-43).
文摘In a periodic real-time system scheduled with the Earliest Deadline First (EDF) algorithm,it is necessary to compress some current tasks to avoid overloading if new task requests to run. Compressing a task means that its period is prolonged while its computation time keeps unchanged. An interesting problem is to find the earliest time to release new tasks without any deadline missing,that is,the earliest smooth insertion time. In this paper,a general frame to calculate the earliest time with multiple rounds of deadline checking is given,which shows that the checking can be done from the request time of the new tasks. A smart way is provided and proved,which takes the value of theΔchecking of the current round as the time step to the next. These techniques potentially reduce the amount of the calculation and the number of the rounds of the checking to get the earliest time. Simulation results are also given to support the conclusion.
基金supported by the National Natural Science Foundation of China(72001212,71701204,71801218)the China Hunan Postgraduate Research Innovating Project(CX2018B020)。
文摘The emergent task is a kind of uncertain event that satellite systems often encounter in the application process.In this paper,the multi-satellite distributed coordinating and scheduling problem considering emergent tasks is studied.Due to the limitation of onboard computational resources and time,common online onboard rescheduling methods for such problems usually adopt simple greedy methods,sacrificing the solution quality to deliver timely solutions.To better solve the problem,a new multi-satellite onboard scheduling and coordinating framework based on multi-solution integration is proposed.This method uses high computational power on the ground and generates multiple solutions,changing the complex onboard rescheduling problem to a solution selection problem.With this method,it is possible that little time is used to generate a solution that is as good as the solutions on the ground.We further propose several multi-satellite coordination methods based on the multi-agent Markov decision process(MMDP)and mixed-integer programming(MIP).These methods enable the satellite to make independent decisions and produce high-quality solutions.Compared with the traditional centralized scheduling method,the proposed distributed method reduces the cost of satellite communication and increases the response speed for emergent tasks.Extensive experiments show that the proposed multi-solution integration framework and the distributed coordinating strategies are efficient and effective for onboard scheduling considering emergent tasks.
基金supported by the National Key Research and Development Program of China (2018AAA0103203)the National Natural Science Foundation of China (62073036,61836001,62102022,62122014)the Beijing Natural Science Foundation of China (42020741)。
文摘With the rapid development of cloud computing and control theory, a new paradigm of networked control systems called cloud control systems is proposed to meet the requirements of large-scale and complex applications. Currently, cloud control systems are mainly built by using a centralized architecture. The centralized system is overly dependent on the central control plane and has huge challenges in large-scale heterogeneous node systems. In this paper, we propose a decentralized approach to establish cloud control systems by proposing a distributed point-to-point task routing method. A considerable number of tasks in the system will not rely on the central plane and will be directly routed to the target devices through the pointto-point routing method, which improves the horizontal scalability of the cloud control system. The point-to-point routing method directly gives a unique address to every task, making inter-task communication more efficient in a complex heterogeneous and busy cloud control systems. Finally, we experimentally demonstrate that the distributed point-to-point task routing approach is compatible against the state-of-the-art central systems in large-scale task situations.
文摘目的:探讨酸敏感离子通道1a(ASIC1a)、弱内向整流钾通道相关的酸敏感钾通道1和3(TASK-1和TASK-3)在大鼠癫痫持续状态(SE)中的表达及其在癫痫持续状态中的作用.方法:成年雄性SD大鼠随机分为对照组(control)和SE组,应用氯化锂-匹罗卡品诱导SE模型,采用real time RT-PCR和Western Blot技术分别检测海马组织ASIC1a、TASK-1和TASK-3在SE后0、1、2和3 h mRNA、蛋白表达水平,应用膜片钳技术观察SE后ASIC1a、TASK-1和TASK-3对海马CA1区锥体神经元兴奋性的影响.结果:在mRNA水平,与control组相比,SE组ASIC1a在2和3h、TASK-1在1h、TASK-3在3h时间点表达显著减少.在蛋白水平,与control组相比,SE组ASIC1a、TASK-1和TASK-3在3h时间点表达均显著降低.与SE control组相比,给予ASIC1a抑制剂后动作电位(AP)的频率明显降低,给予TASK-1和TASK-3抑制剂后,AP的频率均显著增加.结论:SE后大鼠海马区ASIC1a、TASK-1和TASK-3表达下调,且ASIC1a、TASK-1和TASK-3改变了海马CA1区锥体神经元的兴奋性,参与了SE的发生过程.
文摘Based on the wave attack task planning method in static complex environment and the rolling optimization framework, an online task planning method in dynamic complex environment based on rolling optimization is proposed. In the process of online task planning in dynamic complex environment,online task planning is based on event triggering including target information update event, new target addition event, target failure event, weapon failure event, etc., and the methods include defense area reanalysis, parameter space update, and mission re-planning. Simulation is conducted for different events and the result shows that the index value of the attack scenario after re-planning is better than that before re-planning and according to the probability distribution of statistical simulation method, the index value distribution after re-planning is obviously in the region of high index value, and the index value gap before and after re-planning is related to the degree of posture change.
文摘Pooling,unpooling/specialization,and discretionary task completion are typical operational strategies in queueing systems that arise in healthcare,call centers,and online sales.These strategies may have advantages and disadvantages in different operational environments.This paper uses the M/M/1 and M/M/2 queues to study the impact of pooling,specialization,and discretionary task completion on the average queue length.Closed-form solutions for the average M/M/2 queue length are derived.Computational examples illustrate how the average queue length changes with the strength of pooling,specialization,and discretionary task completion.Finally,several conjectures are made in the paper.
基金by-product of the provincial funding project:Empirical Study of Raising Postgraduates' Creative Thinking Ability黔教研合JG字(2015)003
文摘This paper,by using the theory of Seven Building Tasks to analyze the Prose The Great Goal2 which was ever analyzed from the perspective of theme and rheme structure,aims to demonstrate the application of the new theory Severn Building Tasks to analyzing an essay,and thus provide a fresh theory and approach for English learners to analyze prose and learn the English language.
基金This work was supported by the National Key Research and Development Program of China(2021YFB2900603)the National Natural Science Foundation of China(61831008).
文摘A dynamic multi-beam resource allocation algorithm for large low Earth orbit(LEO)constellation based on on-board distributed computing is proposed in this paper.The allocation is a combinatorial optimization process under a series of complex constraints,which is important for enhancing the matching between resources and requirements.A complex algorithm is not available because that the LEO on-board resources is limi-ted.The proposed genetic algorithm(GA)based on two-dimen-sional individual model and uncorrelated single paternal inheri-tance method is designed to support distributed computation to enhance the feasibility of on-board application.A distributed system composed of eight embedded devices is built to verify the algorithm.A typical scenario is built in the system to evalu-ate the resource allocation process,algorithm mathematical model,trigger strategy,and distributed computation architec-ture.According to the simulation and measurement results,the proposed algorithm can provide an allocation result for more than 1500 tasks in 14 s and the success rate is more than 91%in a typical scene.The response time is decreased by 40%com-pared with the conditional GA.